
·,
- " . - '
,· ; . . , . . " ·:. .

.... :.HARR

Start Up 15
Shut Down . 15
AutoOFF 15
Calculations in the CAL Mode 16
How to Read the Display _ _ 20
Basic Operations - - _ . _ . _ . _ __ .. 22
Scientific Calculations in the CAL mode _ 25
Use of Parenthesis ..•. 28
Decimal Places _ 28
Priority level in the CAL Mode _. ._._ 29
Statistical Calculation .. _ _ 35

1. Single-variable Statistical Calculation _ .. _ . __ 36
2. Two-variable Statistics and Linear Regression _ .. , .. _ 37

Calculation Range _ _ 41
Matrix Calculation Function 44
Manual Calculation in the BASIC Mode .•.................................. 55

How to Manually Calculate 56
Recalling Entries , 57
Errors , 60
Serial Calculations 61
Negative Numbers 63
Compound Calculations and Parentheses 63
Using Variables in Calculations•........................... 64
Chained Calculations 66
Error Message 66
Scientific Notation 66

USING AS A CALCULATOR 15 CHAPTER3

Description of System . 5
Key and Switch Operations 6
Modes 7
All RESET Button 10
Contrast Control . 11
Cell Replacement . 11

... 5 INTRODUCTION TO THE COMPUTER .

HOW TO USE THIS MANUAL 2 CHAPTER1

CHAPTER2

Page
INTRODUCTORY NOTE 1

TABLE ,QF CONTENTS

ii

The DEF Key and Labelled Programs 101
Template 102

SHORTCUTS 101 CHAPTER6

Programs 91
BASIC Statement 91
Line Numbers , 91
BASIC Verbs 92
BASIC Commands 92
Modes 92
Beginning to Program on the COMPUTER 93

Example 1 - Entering and Running a Program 93
Example 2 - Editing a Program 94
Example 3- Using Variables in programming 96
Example4-More Complex Programming 98
Storing Programs in the Memory 99

PROGRAMMING THE COMPUTER 91 CHAPTER5

String Constants 77
Hexadecimal Numbers 77
Variables 78

Fixed Variables 79
Simple Variables 80
Array Variables 81
Variables in the Form of A () 84

Expressions 85
Numeric Operators 86
String Expressions 86
Relational Expressions 86
Logical Expressions 87

Parentheses and Operator Precedence 89
RUN Mode 90
Functions 90

CONCEPTS AND TERMS OF BASIC 77 CHAPTER4

Limits 67
Last Answer Feature 68
Length of Formula 70
Scientific Calculations in the BASIC mode 70
Direct Calculation Feature ; 74
Priority in Manual Calculation 76

Ill

APPENDIX A Error Messages 193

APPENDIX B Character Code Chart 197

APPENDIX C Formatting Output 199

APPENDIX D Expression Evaluation and Operator Priority 203

APPENDIX E Key Functions in Basic Mode 205

APPENDIX F Specifications 211

APPENDIX G UsingProgramsWrittenonOtherPCModels 213

PROGRAM EXAMPLES 219

INDEX 241

Machine Operation 187
BASIC Debugging 189

CHAPTER10 MAINTENANCEOFTHECOMPUTER 191

APPENDICES 193

TROUBLESHOOTING 187 CHAPTER9

Commands 115
Verbs 131
Functions 176

Pseudovariables 176
Numeric Functions 179
String Functions 185

BASIC REFERENCE 111 CHAPTERS

Using Printer 1 03
Using Cassette lnteriace 105
Cassette Tape Recorder 105
Operating the Cassette lnteriaceand Recorder 107

Tape Notes 110

USING CE-126P PRINTER/CASSETTE INTERFACE 103 CHAPTER7

Few industries in the world today can match the rapid growth and technological
advances being made in the field of personal computers. Computers which just a short
time ago would have filled a huge room, required a Ph.D. to program, and cost
thousands of dollars, now fit in the palm of your hand, are easily programmed, and
cost so little that they are within the reach of nearly everyone.
Your new SHARP COMPUTER was designed to bring you all of the latest state-of-the
art features of this computing revolution and it incorporates many advanced
capabilities:

• SCIENTIFIC CALCULATOR - It had been normal to use two different tasks,
scientific calculation (including statistics) and computing, before this computer.
But now only one tool is enough. The computer operates both as a scientific
calculator and a pocket computer incorporating many programmed scientific func
tions plus BASIC command keys for simple programming.

• MEMORY SAFEGUARD - The computer remembers stored programs and variab
les even when you turn it off.

• Battery-powered operation for true portability.

• AUTO POWER OFF function which conserves the batteries by turning the power off
if no activity takes place within a specified time limit.

• An expanded version of BASIC which provides formatted output, two dimensional
arrays, variable length strings, and many other advanced features.

• CE-126 printer/cassette interface is provided.

Congratulations on entering an exciting and enjoyable new world. We are sure that you
will find this purchase one of the wisest you have ever made. The SHARP COMPUTER
is a powerful tool, designed to meet your specific mathematical, scientific, engineer
ing, business, and personal computing needs. With the SHARP COMPUTER you
can begin NOW providing the solutions you'll need tomorrow!

Welcome to the world of SHARP owners!

INTRODUCTORY NOTE .1

Introductory Note

3

• Chapter 7 - Basic information on the optional CE-126P Printer/Cassette interface.

* Chapter 9 - A troubleshooting guide to help you solve some operating and
programming problems.

* Chapter 10 - The care and maintenance of your new COMPUTER.

Detailed Appendixes provide you with useful charts, comparisons, and special
discussions concerning the use and operation of the COMPUTER.

Experienced BASIC programmers may go direct from Chapter 6 to Chapter 8 to learn
the specific features of BASIC as implemented on the COMPUTER. Since every
dialect of BASIC is somewhat different, read through this material at least once before
starting serious programming.

If you have never programmed in BASIC before, we suggest that you buy a separate
book on beginning BASIC programming or attend a BASIC class, before trying to work
through these chapters. This manual is not intended to teach you how to program.

The remainder of the manual consists of:

This manual is designed to introduce you to the capabilities and features of your
COMPUTER and to serve as a valuable reference tool. Whether you are a "first-time
user" or an "old hand" with computers, you should acquaint yourself with the
COMPUTER by reading and working through Chapters 2 through 6.

* Chapter 2 describes the physical features of the COMPUTER.
* Chapter 3 demonstrates the use of the COMPUTER as a scientific calculator.
• Chapter 4 defines some terms and concepts which are essential for BASIC program

ming, and tells you about the special considerations of these concepts on the
COMPUTER.

* Chapter 5 introduces you to BASIC programming on the COMPUTER, showing you
how to enter, correct, and run programs.

• Chapter 6 discusses some short cuts that make using your new COMPUTER easier
and more enjoyable.

Chapter 8 is a reference section covering all the commands, verbs, and functions of
BASIC that are grouped and alphabetically arranged within each group for your
convenience.

CHAPTER1
HOW TO USE THIS MANUAL

How to Use this Manual

4

CCCl ,c
CJ

000
00
10
::J

~f~t =::::!JI}

CJCO
,0

0
000

CJO
10

::J

~I ~1 ==::'.JI}

• When the computer is not used

Step@

Step(!)

Using the Hard Cover

When the computer is not being used, place the hard (plastic) cover over the
operation panel of the computer.

• When the computer is to be used

Remove the hard cover from the computer as shown in figure below.

How to Use this Manual

5

To familiarize you with the placement and functions of parts of the COMPUTER
keyboard, we will now take up each section of the keyboard. First, just locate the keys
and read the description of each. In Chapter 3 we will begin using your new machine.

SHARP roc~Ercm1PUTER PC urn

The SHARP COMPUTER system consists of:

• 77-character keyboard.

* 24-digit display.

* Powerful BASIC in 72K-byte ROM.

* 8-bit CMOS processor.

* Option: CE-126P Printer/Cassette Interface

Description of System

I • ' I l' I I ,C,H1\~t1ER2 . ,1

INTRODUCTION TP '.]1Hl1E COMPUTER I'
11 I I I

Introduction to the Computer

6

A dash (-) indicator in the lower left area of the display shows the mode in which the
computer is now set. When this computer has just been turned on, it functions as a
calculator. To show that the computer is in the calculator mode, a dash indicator
appears above the CAL (CALculator) label.

For calculator operations in the CAL mode, refer to CHAPTER 3, USING THE
COMPUTER AS A CALCULATOR.

DEG

~ •I
/- '\
\CAL RUN PRO 'Im) MATRIX STAT PRINT

You will see the following initial information in the display:

PfilNT LJSING GOS\JB RETURN DIM END rn m []] m m CEJ

INPUT IF Tl-!E:rll GOTo F'OA TO m m m 1IJ m GJ

SHARP r i "I! ,· 11 r

Power switch----

To begin with, turn your computer ori.
The POWER switch is located at the upper left corner of the computer. Slide the switch
to the ON position.

This COMPUTER has 77 keys and one slide switch on its panel. Each key function is
identified by various letters, numbers, or symbols inscribed on or above the keys.

(1) Power on

Key and Switch Operations

Introduction to the Computer

7

If you press the ~ key when in the RUN mode, the PRO mode will be selected.

I > -

If you press the ~ key when in the CAL mode, the RUN mode will be selected.

Now switch your computer off, then on again. The CAL mode will be selected.

PRINT USING GOSUB RE1LlRN DIM ENO m m 0 m m IEI

~NPUT IF 'THEN GOTO FOR TO m rn rn IIl m GJ

'®®t§•J
The computer can operate basically in three different modes. One mode is the CAL
mode, in which you can use your computer just like a calculator.
Another mode is the RUN mode, in which you can execute your program or manual
calculation using BASIC commands.
The third mode is the PRO mode, which allows you to store your program into the
computer or correct or amend a stored program.
Switching between these modes can be accomplished by the green ICA!J and IBASICI
keys. The selected mode is identified with a dash (-) indicator displayed just above
the CAL, RUN, or PRO label in the lower left area of the display.

Introduction to the Computer

rerm G] El
OJ

Red key

PRO mode

Press~~ I BASIC mode

CAL mode l Press~

RUN mode

Press~

Mode switching

ENTER

Display

I@) (Red key) ~ 0.

rnrn ~ 12.

rn ~ 12.

rn -+ 3.

m ~ 15.

B

1. CAL mode
Now let's operate the keys.
Set your computer in CAL mode
first. In CAL mode the keys and
functions shown at right can be used
for calculation.

Thus the RUN and PRO modes are selected alternately each time you press the ~
key.
The computer will return to the CAL mode if you press the ~ key.

Introduction to the Computer

9

The I sH1n I key is used to enter the characters or symbols inscribed in brown above
each key that has two or three functions. If you repeatedly press the I sH1n I key, the
SHIFT symbol at the top of the display will go on and off. The SHIFT symbol indicates
that the I sH1n I key is activated and the characters in brown can be entered.

-+ PRINT_

-+ PRINT " V- _

CA ~z' rn 1 SHIFT 1 L£J

If you press an alphabet or number key, the item denoted on the key will be entered.
When you wish to enter the character or symbol denoted in brown above each key,
press the yellow 1.sH1FT I key before operating the key.

Example:

PRINT US,NG GOSUB -+ zxc_ rn rn w
r • DAG b -+ ZXC12.3_ DJ rn GJ rn

CA -+ > §)
,,_. u , i " Sx -+ A=4 + 5_ rn 8 m [±] rn

t
Cursor

In RUN and PRO modes the keys shown below can be used for calculations.

2. RUN and PRO modes

Change the CAL mode to RUN or PRO by using the ~ key, and press the
following keys while watching the display:

Introduction to the Computer

10

Th is operation wi 11 clear all the memory contents (program and data), so do not
press the RESET button without depressing any key unless absolutely necessary.

Then press one of the I ENTER I, CY] , and @:] keys.
Note: If none of the keys is pressed for about 2 minutes after the above display, the

COMPUTER is automatically powered off.

I MEMORY ALL CLEAR O.K.?.

If you get no response from any key even when the above operation is performed, push
the RESET button only and the following message will appear on the display.

Note: When you press the RESET button, keep pressing it for at least 2 or 3 seconds.
If you press the button for a shorter duration, the RESET button may not be
activated.
Press the RESET button with a pointed object such as a ballpoint pen. Do not
use easily broken points, such as mechanical pencils or the tips of needles, nor
points thicker than the hole for the button.

Hold down--~
any key

Reset button

To reset the computer, hold down any key on the keyboard and simultaneously press
the RESET button on the back. This preserves all programs and variables in memory.

ALL RESET: Reset button. This button is used to reset the computer when Clear
(~) or CA is not sufficient to correct a problem.

All RESET Button

Introduction to the Computer

11

When to Replace the Cells
If the display is dim and difficult to see when viewed from the front even after the contrast
control has been turned counterclockwise as far as it goes, the cell voltage is too low.
In this case, replace the cells promptly.

Note: If you are using the optional CE-126P cassette interface, save your programs
and data in memory onto a cassette tape before replacing the cells.

• Use only the specified type of lithium cells (CR-2032) (two required).

The COMPUTER normally operates on the two built-in lithium cells.

When replacing the cells, following these cautionary instructions will eliminate many
problems:

• Always replace both cells at the same time.

• Do not mix a new cell with a used cell.

Cell Replacement

ID ------ Contrast Control
Turn the control in the arrow direction (coun
terclockwise) for a higher contrast and in the
opposite direction (clockwise) for a lower con
trast.

_J_J_/_J_J_J

_J _/ _/ _J _J --'

_J_J_j_J_J _J

_J _J _}_J_J
J _}_j_J_J

'_}_.J_J_j
.J}_J_J

Your computer has on its right side when viewed from the front, a control for adjusting
the contrast of the display. Adjust the display for visibility.

Contrast ConVol

Introduction to the Computer

12

Fig. 3

+1---------- Uthiumcell
Always replace
both of the cells at
the same time

(4) Replace the two cells (Fig. 3).

Fig. 2

(3) Remove the cell cover by sliding it in the arrow direction shown in Figure 2.

Fig. 1

How to Replace the Cells
(1) Turn off the computer by sliding the power switch to the OFF position.

(2) Remove the screws from the back cover with a small phillips screwdriver. (Fig.
1)

Introduction to the Computer

13

CAUTION: Keep cell out of reach of children.

Note: Keeping a dead cell in the computer may result in damage to the computer from
solution leakage of the cell. Remove a dead cell promptly.

If the display is blank or display any symbol other than" - O.", remove the cells
and install them again, then check the display.

I
CAL

n •I

DEG

(7) Push the back cover in slightly while replacing the screws.

(B) Turn on the computer by sliding the power switch to the ON position and press the
RESET button to clear the computer. And then press I ENTER I _
The display should look like this:

Fig. 4

--- ·~-(~ ~Z_~_··-·_· -_ _. ----'---'-"--

\\ ~~)

tiJ- ~ -r.:::·) -

(5) Replace the cell cover by sliding it in the reverse direction of the arrow shown in
Figure 2.

(6) Hook the claws of the back cover into the slits of the computer proper. (Fig. 4)

Introduction to the Computer

15

To conserve on battery power, the COMPUTER automatically turns off when no keys
have been pressed for about 11 minutes. (Note: The COMPUTER will not AUTO OFF
while you are executing a program.)

ON
To restart the COMPUTER after an AUTO OFF, press the ~ key located at the right
of the green ~ key.

Auto OFF

To turn off the COMPUTER, slide the power switch to the OFF position.

Each time you turn off the machine, the display will be cleared.

Shut Down

If the dash (-)·indicator is above the RUN or PRO label, press the ~ key or turn the
power off and then on again to select the CAL mode.

Ji®llUI
To turn ON the COMPUTER, slide the power switch up.

·when you wish to use your COMPUTER as a scientific calculator, place the COMPUT
ER in the CAL mode. The CAL mode is selected when the COMPUTER is switched on
or the ~ key is pressed. When the CAL mode has been selected, a dash (-)
indicator will appear just above the CAL label in the lower left area of the display

Now that you are familiar with the layout and components of your new SHARP
COMPUTER, we will begin investigating its exciting capabilities.

Because the COMPUTER allows you the full range of calculating functions, plus the
increased power of BASIC programming abilities (useful in more complex calcula
tions), it is commonly referred to as a "smart" calculator. That, of course, makes
you a "smart" user!

(Before using the COMPUTER, be sure that the two lithium cells supplied as an
accessory have been correctly installed.)

CHAPTER3
USING AS A CALCULATOR

Using as a Calculator

16

Did you get the correct answer? If you didn't, turn the computer off, then on again,
and try the same calculation.
Now iet us call the value of pi (1T).
Symbol "1T" is inscribed just above the ~ key in brown. The functions identified by
brown letters can be used by first pressing the yellow I SHIFT I key, and then pressing the
required function key.
Now press I sH1FT I ~ .

(123 + 654 = Tf7)

777.

654.

123.

123.

Display

Press the equal key

0
t

<lz Sx .i on m m

Input
r a b rn rn co

Now let us try some simple calculations. Press the following keys while watching the
display:

rffi'mls a
[I)

In the CAL mode, the keys and functions
shown at right can be used for calculation.

Note: In the CAL mode, the results of
calculations cannot be output on the
printer.

Calculations in the CAL Mode

Using as a Calculator

Note that the computer returns to the CAL mode when the i&J key is pressed after the
AUTO OFF.

17

The following outlines the major key functions:

• [C:cE\ (clear) (red key)

If this key is pressed immediately after numeric data is entered or the contents of the
memory are recalled, that data will be cleared. In any other case, operation of the
rn key will clear the operators and/or numeric data that have been entered. The
contents of the memory are not cleared with the ~:cEJ key operation.

(104 = 10000)

10000.

Display Input
x 1ox F rn [SHIFT)~

Red key

What you see in the display is the value of tt,
Next, let us compute 104. For this calculation, you should use the function 10x. This
function is also identified by a brown letter, so the I sH1FT I key must be pressed before
the function key is pressed:

(rr";3.141592654)

3.141592654
Display Input

1[A
I SHIFT I [ill]

Using as a Calculator

18
(1)

0.00

!_n_e_ut
TAB

1 SHIFT 1 rn rn (1) Specifies 2 decimal
places.

23. 000E 0 31 (ENG)

2. 300E 041 (SCI)

I (FIX) 23000. 000

~nput

23 00 1000 [§.] ._I 2_3_0_0_0_. __ ___,, (Normal)

lilll I FIX

rn isc1

lffiJ IENG

• [TAB] (specifies the number of decimal places)

This key is used to specify the number of decimal places when used in conjunction with
a numeral key. Turn off the power switch and then on again. Press !ml key and the
display will show "0.000" (FIX mode).

* rn (display mode switch)

This key is used to switch the display mode for the result of a calculation from the
floating point decimal system (normal mode) to the fixed point decimal, scientific
notation, or engineering notation system, or vice versa.

0.

______ 0_. _ __,E I+--- Error symbol smo@]

The [Efil key may also be used to clear an error.

Using as a Calculator

Input Display Input Display

123 [±] 456 456. I 6 IX) 2 rn 12.

ffi 0. I rn e.
789 @] 912. I s III 2 [£) 3.

(123 + 789 = 912) s m 8.

19

IEXPI: Used to enter a number in exponential form (the display shows "E"
following the number entered).

[QJ to [[] , C!:J , IExPI and 1+1-I *

DEG: Degree [0]

RAD: Radian [rad]

GRAD: Grad [g]

1so0 ; rr (rad); zoos

{Degrees}
DAG

jSHIFT[G]

{Grads)

(Radians)

(Degrees)

* [Q~~ (specifies angular unit.)

This key is used to specify the angular units for numeric data used in trigonometric
functions, inverse trigonometric functions, or coordinates conversion.

(21
0.62500 FIX

Display Input
TAB

(2) Specifies 5 decimal I sH1FT I ml w
places.

0.63 FIX 5 [El B @J

Using as a Calculator

20

The computer has a 24-digit display, of which 16 digits are used to display numbers. In
the CAL mode, calculation results are normally displayed in the floating decimal point
system. If the result is smaller than 0.000000001 or greater than 9999999999
(greater than -0.000000001 or smaller than -9999999999), it is displayed in
exponential format. In the exponential format, the mantissa part of a number is
displayed to 12 significant digits, while the exponent part is displayed to 4 significant
digits (including a decimal point, sign, and symbol).

CAL RUN PRO • · MATRIX STAT PRINT
'----~---''---.____,

Manlissa (12 di9ils) Exponenl (4 digils)

DEG

-1 ~74C"c-:ioQoE_qq • ~-s •• 11~1 I •.1•'1..,.1 •' ••
Exponential display format

MATRIX STAT PRINT CAL RUN PRO lilolilL!J

DEG

1 ·~·74C' c -:ir11·11·1
1....-1 ,_li:1 11:1 ,(1 I Normal display format

This section describes the display formats and symbols used in the CAL mode.

How to Read the Display

0.0000123

-0.0000123

-·1.23E-05

-1. 23

Input

1.23 l±B

:±B : Used to enter a negative number (or to reverse the sign from negative to
positive).

-4000.

4000.

(4 x 103)

4. E 03
Displav

Using as a Calculator

21

(): This symbol comes on when parentheses are used in a calculation formula
by means of the m key.

rJ : This symbol comes on when a number other than zero is stored in the
calculation memory, to indicate that the memory is in use.

E: This symbol comes on if an error has occurred. The error can be cleared by
operating the ~ key.

DEG
RAD
GRAD: These words are selected sequentially each time I sH1FT I G3 keys are

operated. Each of these words indicates the angular units tor trigonometric
functions, inverse trigonometric functions, and coordinates conversion,
respectively.

DEG: Degree [0}

RAD: Radian [rad}

GRAD: Grad [g}

(180 deg. = 1T rad = 200g)

SML: This word comes on when the lsML I key is pressed, indicating that the low
er case mode for the alphabetic characters is selected.

The computer uses the symbols and indicators shown above, whose meanings are the
following:

SHIFT: This word comes on when the I sH1n I key is activated, indicating that the
second function of a key identified by a brown label can be selected.
To release the SHIFT mode, press the I sH1nl key a second time.

HYP: This word comes on when the ~ key is pressed, indicating that a
hyperbolic function has been selected. If I sH1Fr I ~ are pressed, a
phrase, SHIFT HYP, comes on to indicate that an inverse hyperbolic
function has been selected.

MATRIX STAT PRINT CAL RUN PRO

SML DCGRAD () t'J E SHIFT HYP BUSY

Display symbols
The following describes the symbols and indicators that appear in the display to show
the mode, status, or condition of the computer.

Using as a Calculator

22

G) RAD or GRAD is displayed instead of DEG:
The RAD, GRAD, and DEG indicate angular units for display data. Any of these
symbols may be displayed unless a trigonometric function, inverse trigonometric
function, or coordinate conversion is to be executed. Each of these symbols can be
sequentially selected by operating I sH1FT I IQBg] .

@A dash(-) indicator is displayed at the STAT or MATRIX label:
The computer is in the statistical calculation mode. Press I sH1FTI ~ to release
the STAT mode. Press ISHIFTI rn or ISHIFTl10J to release the MATRIX mode.

If not, read the following description and take the necessary action:

CD More than one zero is displayed (e.g., 0.00):
The number of fractional digits is being specified. Clear the TAB setting by turning
off the power switch then on again. The COMPUTER is now in the normal display
mode.

+

+--\-S·

*-'L'
DEG

~1 • I -
CAL RUN PRO~ MATRIX STAT PRINT

This section describes the basic operations of the computer in the CAL mode. Before
starting, turn on the power of your computer. First, press the ~ key to place the
computer in the CAL mode. Then press ~ ~ , and make sure that the display
shows the following initial information.

Basic Operations

If a dash (-)indicator appears just above the CAL label in the.lower left area
of the display, it indicates that the computer is in the CAL (calculation)
mode.

BUSY: This indicator comes on while the computer is performing an arithmetic
operation.

MATRIX: Pressing I sH1FT lj(I] or I sH1FT I :OJ in the CAL mode causes a dash indicator
(-) to appear above the MATRIX label in the lower right area of the display.
The MATRIX indicator indicates that the computer is ready to perform a
matrix operation.
To release the MATRIX mode, press either key combination a second time.

- CAL:

Pressing the I SHIFT I rn keys in the CAL mode causes a dash (-)
indicator to appear just above the ST AT label in the lower right area of the
display. The STAT stands for statistics and indicates that the computer is in
the STAT (statistical calculation) mode.

- STAT:

Using as a Calculator

23

Note that multiplication and division have priority over addition and subtraction. In
other words, multiplication and division will occur before addition and subtraction.

2. Multiplication, Division
a. Key in the following: 841 00 586 Ci] 12 @

Answer: 41068.83333

b. Key in the following: 427 [±] 54 00 32 GJ 7 El 39 00 2@
Answer: 595.8571429

1. Addition, Subtraction
Key in the following: 12 [±] 45.6 El 32.1 [±] 789 G 741 [±] 213 @

Answer: 286.5

In this manual, the key functions are shown as follows:

sin~'~
I SHIFT I ~ Sin" key

[ili)~ ~lii.J Sin key

DEL~
I SHIFT I @El Deletion key

~~ ~I Left arrow key

' I SHIFTI Ll:ill Factorial key
n! J

[IJ ____,..------+ [I] Close parenthesis key

L ~ These keys are operable when

L the statistical calculation mode
I SHIFTI ~ is set.

(4) Symbol ~ is displayed:
Numeric data is already in the memory. This symbol can be cleared by ~CE]

ix·MJ .
(~) All symbols displayed in the upper area of the display can be cleared with the [c:c-El

key, with the exception of those described in the above items (31 and (4).

Using as a Calculator

24

Key in: 12 III 5 [M±) Answer: 17
To subtract, key in: 2 [±] 5 0 [ill [M±)

Answer to this equation: - 7
Key in [ID!) to recall memory: 10 is displayed.
Key in: 12 00 2 @ ~

Answer: 24 (Also takes place of 1 O in memory)
Key in: 8 G] 2 [M±)

Answer: 4 IBM] : 28

Note: Memory calculations are impossible in the STAT (Statistical calculation)
mode .

.._ __ When subtracting a number from the memory, press the [!B and (M±] keys.

3. Memory Calculations
The independenUy accessible memory can be accessed by using the three keys: i~ ,

ffiMI, [M±l . Before starting a calculation, clear the memory by pressing ~ and
~·

a+bxc= +be (Constant addition)
axb7c= 7c (Constant division)
a7bxc= ...!. x (Constant multiplication)

b
(Constant subtraction) axb-c= -c

Note: The machine places some calculations in pending status depending on their
priority levels. Accordingly, in successive calculations the operator and numer
ical value of the calculation last performed in the computer are handled as a
calculating instruction and a constant for the next calculation, respectively.

Answer: 5
Answer: 10

Key in: 15 GJ 3@:)

Key in: 30 @J

Answer: 15
Answer: 30

Key in: 3 [K) 5 0
Key in: 10 0

Constant Division: The number entered after the division sign is a constant.

Constant Multiplication: The first number entered is a constant.

Using as a Calculator

25

Answer: 400

Answer: 2.893443986

Answer: 27 .2899172 Key in: 4 ~ [!filJ
Calculate: Sinh" 9
Key in: 9 I sH1FT I [·~~~ ~

4. Power Functions
Calculate: 202

Key in: 20 ~

3. Hyperbolic and Inverse Hyperbolic Functions
Calculate: Sinh 4

DEG: 0~0~180 [0]

RAD: o~e~1T [rad]

GRAD: 0~8~200 [g]

8=sin·1 x. 8=tan-1x
DEG: -90~8~90[0]

RAD: - 1T 2 ~e~rr 2 [rad]

GRAD: -100~8~100 [g]

The calculation results of the respective inverse trigonometric functions will be
displayed within the following limits.

Answer: 30

2. Inverse Trigonometric Functions:
Calculate: Sin" 0.5
Set the angular unit to "DEG".
Key in: .5 I sH1FT I (Sir1J

Calculate: Cos·1 -1
Set the angular unit to "RAD".
Key in: 1 l±B I sH1FT I ;cos·•] To enter a negative number, press the [ill key

after a number.
Answer: 3.141592654 (Value of rr)

To perform trigonometric or inverse trigonometric functions, and coordinates conver
sion, designate the angular unit for the calculation. The angular unit "DEG, RAD, or
GRAD" is designated by the I SHIFT I and roRG] keys.

1. Trigonometric functions
Set the angular unit to "DEG".
Calculate: Sin 30° + Cos 40° =
Key in the following: 30 ~ + 40 ~ [E=.J

Answer: 1 .266044443
Calculate: Cos 0.25rr
Set the angular unit to "RAD".
Key in: .25 [XJ liB1£il ii('] r-= I re~] (Remember to use the I SHIFT I key.)

Answer: 0. 707106781

Using as a Calculator

26

Answer: 1251

Note that the section on Errors deals with the calculation limits of the computer.

8!
Calculate: 8P3 = (B _ 3)! =

Key in: 81 SHIFT!(]!]] m [I] 8 G 3 CD I SHIFT! @II m
Answer: 336

1 o. Percent calculations
45 Calculate: 45% of 2,780 (2,780x
100)

Key in: 2780 00 45 I sHrnl ~

Answer: 0.309523809

8. Reciprocals
Calculate: 1/6 + 1/7
Key in: 6 ~ C£J 7 ~ @

9. Factorial
Calculate: 69!
Key in: 69 I sHrn I (]!]]

Answer: 1.711224524E 98 (=1.711224524x1Q98)

Answer: 2.238046103

Answer: 3.044522438

Answer: 3

Answer: 3

Answer: 5

Answer: 27
Answer: 81

Calculate: 33 and 34

Key in: 3 CE) 3 @
Key in: 3 [El 4 @

Using as a Calculator

5. Roots
Calculate: v'25
Key in: 25 G':]
Calculate: Cubic root of 27
Key in: 27 I sH1nl ~
Calculate: Fourth root of 81
Key in: 81 lsH1nl ~ 4 w

6. Logarithmic Functions
Calculate: In 21, log 173
Natural Logarithms:

Key in: 21@
Common Logarithms:

Key in: 173 ~

7. Exponential Functions
Calculate: e3·0445

Key in: 3.0445 lsHrFTI ~
Answer: 20.99952881 (21 as in item "6" above)

Calculate: 102·2ss
Key in: 2.238 I sH1FT I [1Q!J

Answer: 172.9816359 (173 as in item "6" above)

Solve for x = 6 and y = 4
Angular unit: DEG
Key in: 6 [I] 4 I sH1n I i;;r'81 Answer: 7.211102551 (r)
Key in: [I] Answer: 33.69006753 (8)
Calculate the magnitude and direction (phase) in vector i = 12 + j9
Key in: 12 rn 9 I SHIFT I ~ Answer: 15 (r)
Key in: [I] Answer: 36.86989765 (8)

27

DEG: 0 ~ I 8 I ~ 180

RAD: 0 ~I 8 I~ rr
GRAD: 0~181~200

r=v'x2+y2
(r, (J) try (x,y) ylt,,//P

y - r

0 x X 0 (J - ----X

12. Coordinates Conversion
Converting rectangular coordinates to polar (x, y --+ r, 8)

A racehorse has the track times of 2 minutes 25 seconds, 2 minutes 38 seconds,
and 2 minutes 22 seconds. What is the average running time of the horse?

Key in: .0225 ~ [±] .0238 ~ W.0222 ~ @]
Answer 1 : 0.123611111

Key in: GJ 3 @.]
Answer 2: 0.041203703

Key in: lsH1nl ~

Answer 3: 0.022833333 or the average time is 2 minutes 28 seconds

When converting an angle in decimal degrees to its sexagesimal equivalent
(degrees/minutes/seconds), the answer is broken down: integer part =

degrees; 1st and 2nd decimal digits = minutes; 3rd and 4th digits = seconds;
and the 5th digit and up = fractional seconds.

Convert 24.7256 to its sexagesimal equivalent (degrees/minutes/seconds)
Key in: 24.7256 I sH1FT} ~

Answer: 24.433216 or 24°43'32"

11. Angle/Time conversions
To convert an angle given in the sexagesimal system (degrees/minutes/sec
onds) to its decimal equivalent, a value in degrees must be entered as an integer
and values in minutes and seconds as decimal fractions, respectively.

Convert 12°47 '52" to its decimal equivalent.
Key in: 12.4752 ~

Answer: 12. 79777778

Calculate: 547 - 473 x 100
473

Key in: 547 B 473 I sH1FT I Li"l!:l
Answer: 15.6448203

Using as a Calculator

I SHIFT I ~ rn ~ Designates o decimal place.
(The 1st decimal place is rounded.)

I SHIFT I ~ [I]~ Designates 1 decimal place.
(The 2nd decimal place is rounded.)

I SHIFT I [fill rn~ Designates 9 decimal places.
(The 10th decimal place is rounded.)

28

The I sH1FT I. and [fill keys are used to specify the number of decimal places in the
calculation result. The number of decimal places after the decimal point is specified by
the numeral key (rn - rn) pressed after the I SHIFT I and [fill keys. In this
case, the display mode must be FIX (fixed decimal point), SCI (scientific notation),
or ENG (engineering notation).

Decimal Places

Note: The [TI keys located just before the CE] or [ffi] key can be omitted.

Calculate: 12 + 42 + (8 ~ 6)
Key in: 12 m 42 [£) OJ 8 G 6 OJ @J

Answer: 33
Calculate: 126 + [(3 + 4)x (3 - 1))
Key in: 126 CTI OJ CO 3 C±J 4 CIJ 00 CO 3 G 1 U] OJ @:I

Answer: 9

The parentheses keys are needed to cluster together a series of operations when it is
necessary to override the priority system of algebra. When parentheses are in use on
the COMPUTER, the symbol "()" will appear in the display.
Calculations in parentheses have priority over other calculations. Parentheses in the
CAL mode can be used up to 15 times in a single level. A calculation within the
innermost set of parentheses will be performed first.

Use of Parenthesis

In the above example, e
= rr/3 is input first and is
replaced with r = 14 by
pushing the rn key after
r is input.

rn 14 rn 1 SHIFT 1 E!ll

T

Converting polar coordinates to rectangular (r, 0 ~ x, y)
Solve for P (14, ir/3), r = 14, e = ir/3)
Angular unit: RAD

Key in; I SHIFT I 00 rn •3 CE]
Answer: 7.000000002 (x)

Key in: [I]
Answer: 12.212435565 (y)

Using as a Calculator

29

+ - '
=, M+, 6.%

(4)
(5)

Operations
Functions, such as sin, x.2
y", vy
x, -i- (Calculations which are given the same priority level are executed in

their sequence of input.)

Level
(1)
(2)
(3)

The machine is provided with a function that judges the priority levels of individual
calculations, which permits keys to be operated according to a given mathematical
formula. The following shows the priority levels of individual calculations.

Priority Levels in CAL Mode

..... 0.055555555
This is determined by the computer in the
form of 5.55555555555 x 10·2. Rounding
the 11th digit of the mantissa results in
5.555555556 x 10-2. When changed to
the floating decimal point display, the
rounded part may not be displayed as in
this example.

(ENG mode) 55.556E-03

(The 4th decimal place of the mantissa part is rounded.)
(SCI mode) 5.556E-02

--. 5.555555556E-02 (SCI mode)
(The 10th decimal place of the mantissa part is rounded.)

(The 1 Oth decimal place is rounded.)
(FIX mode) 0.055555556

Example:
liilii:IJ [f_~J rn
0mc+1wc=_1

To clear the TAB setting (designation of the decimal places), turn off the power switch
and then on again. The display is now in the normal display mode.

Using as a Calculator

30

With the [El pressed, 3 calculations
remain pending. Pressing the [±] key
executes the calculations of 'V" high
est in priority level and "x" identical in
priority level. Alter the G] key is
pressed, the other 2 calculations will
remain pending.

0 0 @
1 m2003 CEJ4 ms

Pending of 3 levels
0 0

1[IJ21X)3[El4~

Pending of 2 levels

Pending of 1 level Ex. 1 [±] 2 W
(i)

1m2003m

• Single-variable functions are calculated immediately alter key operation without
being retained. (x2, 1/x, nl, ~DEG, ~DMS, etc.)

Calculation without using parentheses

The numbers G) - ®indicate the sequence in which the calculations are carried out.

When calculations are executed from the higher priority one in sequence, a lower
priority one must be set aside. The machine is provided with a memory area for up to
eight levels of pending operations.
As the memory area can also be used in a calculation including parentheses,
calculations can be performed according to a given mathematical formula unless the
levels of parentheses and/or pending operations exceed 8 in total.

5 m 2 IX) 30 ~ m 24 IX) 5 [El 3 w ~
(D

0 (4)

G) 0)

®

Ex. Key operation and sequence of calculation in 5 + 2xsin 30 + 24 x53 =

Using as a Calculator

31

(Decimal)
10
\

15

(Hexadecimal)
A
\
F

Allows you to convert a hexadecimal number into its decimal equiva
lent and, at the same time, releases the computer from the HEX
mode. (Symbol "HEX" disappears from the display.)

Hexadecimal notation is one of the notation systems broadly used in the computer field.
The radix for hex notation is 16 and hex numbers consjst of numerals O through 9 and
uppercase letters A through F used in place of 1 O through 15 of decimal notation.

Conversion between Decimal and Hex Numbers, and Hex Calculations
(Et£"XJ , l·OECJ)
l•HExJ : Allows you to convert a decimal number into its hexadecimal equiva

lent and, at the same time, places the computer in the HEX mode.
(The display shows the symbol "HEX".)

Ex. ax(((b cx(((d + e)xf) -i- g

t ~t~------ Parentheses, if continued, can be used up to 15

• Parentheses can be used unless pending calculations exceed 8. However, paren
theses can be continuously used up to 15 times.

4 G:.J 5 LJj

Pressing the f .. l J key executes the cal
culation of 3 - 4 + 5 in the paren
theses, leaving 2 calculations pending.

ii) 1 [±] 2 [X) [.:0 3 [=J

4 [fl 5

4 numerals and calculation instructions
are left pending.

i) 1 [±] 2 [X) 3 [El OJ Ex.

Calculation using parentheses

Using as a Calculator

32

• If a decimal number having a fractional part is converted
into a hex number, the fractional part of the decimal
number is truncated and only its integer part is converted
into a hex number.

Answer: 78. HEXI

• If you attempt decimal-to-hex conversion on a negative decimal
number, the computer internally performs "two's complement"
calculation and shows the result in 16's complement.

• The r±El key may be used to reverse the positive or negative sign
of the numeric data now in the display. If the sign of a positive hex
number is reversed, the complement of the positive number will be
obtained in the display.

Example: Convert decimal number 123.4 into its hexadecimal equivalent.

Key in: I sH1nl ~ 123.4 ~

Answer: FFFFFFFFFE. HEX!

Example: Convert decimal number -2, into its hexadecimal equivalent.
Temporarily clear the HEX mode with ~ I sH1FT I ~ .

Key in: [TI fill ~

To perform a new conversion, temporarily clear the HEX mode with
lsH1FTI ~.

1E. HEX Key in: 30 ~ Answer:

To clear the Hex mode, operate I sH1FTI ~ . You cannot clear it with the ~ key.

1. Decimal to hex conversion
Example: Convert decimal number 30 into its hexadecimal equivalent:

Hex numbers A through F can be entered by first placing your computer in the Hex mode
(with ~ key), then pressing the respective keys shown in figure.

The symbol HEX indicates that the numeric
data shown in the display is a hex number,
and that you can perform any basic arithmetic
operations on hex numbers.

Using as a Calculator

33

Example: A4 +BA=
Key in: A4 [±] B A @:.!

Answer: 15 E. HEXI
(350 in decimal)

Example: 8x3 =

Key in: 8003@]

Answer: 18. HEXj
(24 in decimal)

Example: (12 + D)xB =
Key in: [ml co 12 [±] D OJ IX] B @:.!

Answer: , 55. HEX'
(341 in decimal)

3. Hexadecimal calculations
Hexadecimal calculations can be done after your computer is placed in the Hex
mode. Press [ml ~ and the symbol HEX will be displayed.

• If any of hex numbers FFFFFFFFFF to FDABF41 C01 is converted
into its decimal equivalent, the corresponding decimal number will
become negative.

-238.

HEX I FFFFFFFF12. Answer:

Convert hex number FFFFFFFF12 into its decimal equivalent:
Key in: [ml E¥iJ FFFFFFFF 12 I sH1n I ~

Example:

700. Answer:

2. Hex to decimal conversion
Example: Convert hex number 2BC into its decimal equivalent

Key in: @.::@ f:itX} 2 B c I sH1FT I ~ ~~~~~~~~~~~~~~

Using as a Calculator

34

• In the Hex mode, the function keys on the computer are not usable.

• When the computer is in the STAT or MATRIX mode (a dash(-) indicator is shown
at the STAT or MATRIX label), neither conversion between decimal and hex
numbers nor a hex calculation is executable.

AB. HEX

Example: A B [±El ~ FFFFFFFF55. HEX

Example: B GJ 3 [KJ ... Error (Symbol "E" is displayed.)

If a fractional part is in the result of the final calculation, it will be truncated and only
the integer part of the result will be displayed.

Example: B CB 3 ~ ... 3. HEX

• In the Hex mode, the [±a key may be used to obtain a complement for the hex
number now shown in the display.

For hex calculations, you should note the following points:

• In hex calculations, the computer ignores all fractional parts. This means that the
decimal point key, GJ , is meaningless even if pressed for a hex calculation.

• If an intermediate result in successive hex calculations includes a fractional part, an
error will result.

Answer:

Answer:

A3882FBIM±J

Answer: 6F. HEXI

730. HEXI

7AC. HEXI

Total
Keyin: ~ ~

43AG 3CB 1M±J

43A - 3CB =
+)A38 - 2FB =

Example:

Using as a Calculator

35

Memory z y x w v u
Statistic 11 L'.x LX2 LX)' }:;y .L'.y 2

When a statistical calculation is performed, the following statistics are automatically
stored in the memory area for fixed variables used in the BASIC mode. And these
statistics can be used in the BASIC mode, because these statistics are retained even
when the statistical calculation mode is reset. These statistics are cleared when the
statistical calculation mode is reset and then set again for another statistical calcula
tion.

Keys that are used mainly in the statistical calculation mode.

Display a dash indicator in this position by
pressing the I SHIFT I and~keys.

To perform statistical calculation, press the I sHtFr I and ~ keys (under the red ~
key) in the CAL mode, a dash (-) indicator will appear just above the "STAT" label
in the lower right area of the display. The "STAT" stands for STATistics, and
indicates that the computer is in the statistical calculation mode.
When the computer is in the RUN or PRO mode, press the [GAjJ and then [sH1FT I ~
to perform a statistical calculation.

Statistical Calculations ,

Using as a Calculator

36

Value 35 45 55 65

Frequency 1 1 5 2

Example:

Calculate standard deviation, mean, and variance (sx)2 from the following data:
Set the computer in the statistical calculation mode.

jLx2-ni2 ax=
n

(Used when all the populations are taken as
sample data or when finding the standard
deviation of a population with samples taken
as that population.)

Data for single-variable statistic calculations are input by the following key operations:
(1) Data @ill! (used to enter data one by one)
(2) Data 00 Frequency @ill! (used to enter two or more of the same data)

"n".
(6) ax:

j~----- (Used to estimate the standard deviation of
LX2 - ni2 sx = . a population from the sample data extracted

· n - 1 from that population.)

Standard deviation with population parameter taken to be

"n-1 ". sx: (5)

1. Single-variable Statistical Calculation
The following statistics are obtainable in a single-variable statistic calculation:

(1) n: Number of samples
(2) Lx": Sum total of samples
(3) Lx2: Sum of squares of samples
(4) :X: Mean value of samples i,,.,, Lx

n
Standard deviation with population parameter taken to be

• Hexadecimal calculation

* Conversion between hexadecimal and decimal numbers

To clear previous statistical inputs and calculations, reset the statistical calculation
mode once and set this mode again. Otherwise, when a new statistical calculation is
performed, incorrect answers will be obtained.

When the statistical calculation mode is set, the following cannot be performed:

• Memory calculation

• Calculation with parentheses

• Coordinates conversion

Using as a Calculator

37

2. Two-variable Statistics and Linear Regression
In addition to the statistics for both variables x and y which are the same as those of x in
single-variable statistics, the sum of the products of samples ~xy is obtained in two
variable statistics. Two-variable statistics make possible the development of a relation
ship (correlation) between two sets of data. Each pair of data has x and y values.
From these sets of data a line of regression can be established. The relationship of the
two sets of data by use of the straight line method is called Linear Regression. In Linear
Regression there are three important values, r, a, and b.
The equation of the straight line is y = a + bx, where a is the point at which the line
crosses the Y-axis and b is the slope of the line.
The correlation coefficient r shows the relationship between two sets of data. A perfect
correlation between two values is an r equal to 1 (-1 is a perfect negative correla
tion); in other words, by knowing the value of one variable you can predict with 100%
accuracy the value of the other variable. The further the value of r is from 1, the less
reliable will your predictions be. The following table can be used as a set of definitions of
the values of the correlation coefficient:

Display:

7.
9.

Key in:

65 00 2 lsHtFTI ~

60 00 2 ffiilll

Correct Data (CD): The last data entry in the above example is an error and must be
changed to 60 x 2.

Key in: Display:

Mean: @!.Film 53.88888889
Standard Deviation: lsHIFTI ~ 9.279607271
Variance: ~ 86.11111111

Notes: 1. After all the data have been entered, statistics such as mean value,
standard deviation, etc., may be obtained in any desired order.

2. After a mean value, standard deviation, or any other statistic has been
obtained as an intermediate result, more data can be entered and
statistical calculations can be performed continuously on additional data
entry.

Key in: Display

[SHIFT I [STAT] 0.
35 ~ 1.
45 ~ 2.

55X5 ~ 7.
65x2 ~ 9.

As each sample is entered, the number of data of that sample will appear at the right of
the display.

Using as a Calculator

38

Display

1.
2.
3.
4.
6. (Note: To input multiple

identical samples, pro
ceed as indicated.)

79
so
87
96
73
73

y
Student No. Mark in Math.

ll x
82

2 53
3 61
4 74
5 51
6 51

Key in:

82 @ 79 @ill]
53 ~ 50 ~
61 @ 87 @ill]
74 ~ 96 @ill]
51 ~ 73 00 2 @mi

Example 1: If we know a student's mark in mathematics, can we predict the mark in
English?

The exam marks for five students chosen at random are given in the following table:

Mark in English

S = Lx2 - (Lx)2
xx n

(I;y)2
Syy = LY2 ----

n
.l:x· 1:y

Sxy = LXy-~--
n

a: a= ji - bi l Coefficient of linear
b: b= Sxy regression equation

Sxx y= a+ bx

r: Correlation coefficient

Sxy
r = --;:::=====-

.../ Sxx. Syy

Negative
Correlation

Positive
Correlation

Using as a Calculator

Value of r Call it

+0.80 to + 1.00 Extra High
+0.60 to +0.80 High
+0.40 to +0.60 Moderate
+0.20 to +0.40 Low
-0.20 to +0.20 Nil
-0.20 to -0.40 Low
-0.40 to -0.60 Moderate
-0.60 to -0.80 High
-0.BO to -1.00 Extra High

39

Predict the age of death of a 6-foot man weighing 190 pounds in 1950.

190 I sH1FT I rTI 73.4945283 years

To reach age 90, what should a man's weight be in 1960?
90 lstt1FT)[E) 160.3712108 pounds

To reach age 150, what should a man's weight be? Obviously, the answer will make
no sense, indicating the danger of carrying a straight-line extrapolation too far.

321.9292125 (y-axis)
-1.795088908 (slope)

!SHIFT) m
ISHIFT)W

-0.792926167

2.
1.

Display
0. !SHIFT)~

72 M 185 ~
67@ 226 ~
(Continue to place in all data)
lsHIFTI [r)

The value for r indicates a relatively high negative correlation. A higher weight means a
shorter lite span. To graph the regression line, coefficients a and b are used.

Weightatage65 185 226 200 169 170 195 175 174 198 172

9 10 7 8 5 6 4 3 2 Sample

72 67 69 85 91 68 77 74 70 82 Age at death

Example 2: Is weight a good predictor of longevity among men 65 years of age? In
1950, 10 men, each six feet tall, were selected for an experiment to
determine if their weight effected their life span.

If we had a student whose mark in mathematics was 90, the student would have a mark
of 95 in English based on this analysis.

Display
95.33333333

Key in:
90 I SHIFT I [El

The value of 0.571587901 for r indicates that the correlation is moderate. The
equation for the straight line for this data is y = 34:26 + 0.68x when truncated to
second decimal places.

0.571587901
34.26190476 (y-axis)

0.678571428 (slope)

I SHIFT! [TI
I SHIFT I [~Cl
!SHIFT! m

Using as a Calculator

40

246.

X-Y * Y/Z_

>

• Change the CAL mode to RUN and calculate 82.

4. 226 ~ 220 ~

205 ~ 221 ~

0.

• Enter the data in the CAL mode.

S2 L (x -i)2

l:x2 - nx2

Lx2 - .L (Lx)2 n

When performing calculations using this statistical data, use the RUN mode.

For example, to determine the sum of squares (82) of four pieces of data, 205, 221,
226, and 220, operate your computer as follows:

Memory z y x w v u

Statistic n LX Lx2 LXY LY l:y2

The following statistical data obtained in the CAL mode can be used in the BASIC
mode.

CAUTION

Using as a Calculator

41

Functions Dynamic range Note

DEG: lxl<1 x1010

RAD: I x I < 1 ~O x 1 01
0

GRAD: lxl<.!Qx10'0
sin x 9
cos x In tan x, however, the following cases are excluded.
tan x

DEG: Ix I : 90 l2n - 11

RAD: lx1:__1'.!_(2n-1) n = integer
2

GRAD: Ix I = 100 (2n - 1)

sin-1 x
-1 ~ x ~ i cos-1 x

tan" x I x I < 1 x 101 00

In x 1 x 10-•• ~ x < 1 x 10100 (In x = log8 x)
log x

ex -1 x 10100 < x s 230.2585092
(e;,
2. 718281828)

10X 1X10100<X<100

•)' > 0: -1x10'00 <x logy< 100

yX ("} •y = 0: x>O yx= 10x·logy • y < 0: x: integer or .l..: odd number
x

-1x10100 «:x log ly I< 100

•)' > 0: -1x10'00< ~ logy<100,x*O

::;; •Y = 0: x>O ~ .1-logy

•y < 0: 1 . integer (x *D)
y = 1ox

x or -x·
-1x10100< ;.1oglyl<100

vx· Ix I < 1 x 10100

sinh x
cash x -227 .9559242 ~ x ;;; 230.2585092
tanh x

sinh " ' x Ix I< 1 x 10'0

cosh " x 1$x<1x10'0

ranh ' ' x Ix I< 1

Scientific functions:

Four arithmetic calculations:
tst operand, 2nd operand, and
calculation result: ±1 x10-99 - ±9.999999999x1099 and O

"'c·a1cuiation Range ,

Using as a Calculator

42

Functions Dynamic range Note

.JX 0;£X < 1X10'00
x1 Ix I < 1 x 1050

1 I x I < 1 x 10100
x x#O

n! 0;£n;£69 (n: Integer)

D.MS-+DEG Ix I< 1 x 10100

DEG-. D.MS Ix I < 1 x 10100

HEX-+ DEC 0 ~ x ~ 2540BE3FF x is an integer
FDABF41C01 ~ x ;£ FFFFFFFFFF in HEX mode

DEC-+ HEX Ix I~ 9999999999 x is an integer.

X, v r:r. 8
(x1 + y1) < 1 x 10100 r=~

~< 1 x 10100 8 =tan-• ~ x x
r < 1 x 10100, x = r cos 8

r, 8-+ X, y I rsin8I<1x10'00 y = r sin 8

I rcos8I<1x10100 8 is in the same
condition as x
of sin x, cos x.

Ix I < 1 x 1050
I y I< 1 x 1050
I :Ex I < 1 x 10100

DATA :E x1 < 1 x 10100
CD I L:y I < 1 x 10'00

:Ey' < 1x10100
I :Exy I < 1 x 10100
I n I < 1 x 10100

x n#O

n * 1
Statistica I Sx o~ I:x' - nx1

< 1 x 10100
calculation n-1

n>#O
ax

0 ;£ I:X1 - ni'1
< 1 x 10100 n

ji n*O

n * 1
Sy I:y' - nji1

<1x10100 o~
n -1

n*O
ay

0 .::;_ I:y' - nji' < 1 x 10100 - n

Using as a Calculator

43

For the accuracy of functions other than shown above, the error is ± 1 at the 10th digit,
as a rule. (In the scientific notation system, the error is ±1 at the lowest digit of
mantissa display.)
However, the accuracy will become low around singular points and inflection points of
functions.

Therefore, errors are accumulated in each stage of the continuous calculations,
causing the accuracy to deteriorate. (The same applies to other continuous calcula
tions made by the computer such as y and \YY.)

Functions Dynamic range Note

n f 0
0 <I (Ex' - nX2) · (Ey' - n.)1') I < 1 x 10100

I l:xy -
Ex· Ey I < 1 x 1 o=

n
r Ex· Ey >.;xy-

n
. ······------·---·--·-- < 1 x 10100

J1>:.x1 -nj-2·)·(>:.y' -n}•'l

n#-0
0 <I Ex' - nx' I < 1 x 10100

I >:.xy-
l'.X. >:.y I < 1 x 10···

Statistical b n

calculation

I
>:.xy -

I:X·l:y

I
n < 1 x 10100

Ex' - nx2

a is the same condition as b, and
a 1y-bx1< 1 x 10100

y I a + bx I < 1 x 10100

x' I y ~a I < 1 x10100

Using as a Calculator

44

In addition, matrixes X, Y, and Mare stored in the same memory area as BASIC
arrays X(*,*), Y(*.*), and M(*.*). Jn other words, the values of the matrix
elements entered in the BASIC mode can be calculated in the CAL mode.

When entering the values of matrix elements in the BASIC mode, pay attention to the
following points:
(1) Matrix elements X(i,k) correspond to BASIC array elements X(i-1, k-1). For

example, X(1,2) correspond to array X(0, 1).
(2) All the matrix element values stored in memory will be cleared by BASIC

command RUN, CLEAR, or NEW.

Input ot Matrix Element
In the CAL mode, pressing ISHIFTI rn or lsH1nl rn causes the COMPUTER to
enter the MATRIX mode. In this mode, you can enter the elements of a matrix for
calculation of the matrix, as well as to have the computer perform matrix operations
and display the matrix elements entered.

The keys and their functions used to enter and display matrix elements are as
described below.

With this computer, such an array is expressed as matrix .X, Y, or M. One of the sets
of numbers which form a matrix is called a matrix element. Matrix element a11 is
expressed as X(1,1), Y(1, 1), or M(1, 1). The horizontal arrangement of matrix
elements is called a row while the vertical arrangement is called a column.

Matrix Configuration
With the COMPUTER, three matrixes X, Y, and M can be defined. Each matrix can be
defined within a range of 1 to 99 both vertically (i.e., columns) and horizontally
(i.e., rows). However, the total matrix size is dependent upon the memory capacity
of the COMPUTER.

a,2 a,n J
a22 a?n
am2 ······ amn

A matrix is a rectangular array a;k {i = 1, 2 ... , rn, k = 1, 2 ... , n) of a given set of
numbers (mxn elements) as shown below.

In the CAL mode, the COMPUTER has a function to calculate matrixes or their
determinant values.

Matrix Calculation Function

Using as a Calculator

45

3
0

Y= [5/3
-1

-5
2

When you input the respective elements of a matrix, you may use any of the keys that
you use in the CAL mode for four basic operations and scientific calculations.

Example 1: To enter the following two matrixes:

Key Function

1sH1FTI m •Puts the computer in the MATRIX mode.
• Allows you to enter the elements of matrix X and then the

elements of matrix Y, and the computer to calculate the
matrixes.

• Releases the computer from the MATRIX mode when these
keys are pressed a second time.

lsH1FTI [TI •Puts the computer in the MATRIX mode.
• Allows the computer to perform matrix calculations.
• Releases the computer from the MATRIX mode when these

keys are pressed a second time.

I ENTER I • Stores in memory the number of rows and number of columns
which form a matrix and other matrix element data, and then
the computer waits for the next data entry.

IE • Shifts the cursor to the right by one column. (When the cursor
is at the rightmost column, the cursor moves to the next
element.)

G • Shifts the cursor to the left by one column. (When the cursor
is at the leftmost column, the cursor moves to the preceding
element.)

[TI • Shifts the cursor up by one row (i.e., to the element immedi-
ately above the current column).

• Returns the computer to the previous step in operation.

I.TI • Shifts the cursor down by one row (i.e., to the element
immediately below the current column).

• Puts the computer in the wait state for next step in operation.

Using as a Calculator

46

50 I X(1,2) -5
IENTERl2 I X(1, 3) 2.

I ENTER I 8 I X(2, 1) 8.

jENTERl2 I X(2,2) 2.

I ENTER I 23 I X(2,3) 23.

!ENTER! I MATRIX:Y(0 _' 0)

After your input of element X(1, 1), the computer waits for your input of the next
element X(1, 2).

0. I X(1,2)

3.333333333 lxc1,1) 3@]

Then enter the number of columns as "3" and define matrix X as a matrix with a size of
(2, 3), and the computer is ready for your input of the value of element X(1, 1).

1orn I X(1,1) 10.

0. lxc1,1) 3 IENTERI

I MATRIX:X(2, 0 -)

"2" is entered as the number of rows.
I MATRIX:X(2 - ' 0) 2

Because matrix X is undefined, (0, 0) is displayed when the computer is put in the
MATRIX mode.

I MATRIX:X(0 - ' 0)

Operation:

Using as a Calculator

47

On input of all the elements of matrix Y, the message "MATRIX OPERATION" will
appear on the display, indicating that the COMPUTER is ready to perform matrix
calculations. If only matrix X needs to be calculated, press ~ I ENTER I when you
input the number of rows and number of columns, respectively, for matrix Y.

2 I ENTER I MATRIX:Y(2, 0_)

3 MATRIX:Y(2, 3_)

[ENTERl5G]3@] Y(1, 1) 1.666666667

[ENTERl3 Y(1, 2) 3.

IENTERl2 Y{1, 3) 2.

I ENTER l 1 r±B Y(2, 1) -1.

IENTER[O Y(2,2) 0.
I ENTER I B r±a Y(2,3) -6.

I ENTER[MATRIX OPERATION

After you have completed the input of all the element data of matrix X, you must define
the size of matrix Y and then enter the elements of matrix Yin the same manner as you
did for matrix X.

Using as a Calculator

48

Key Function

rn x + r-x: Performs addition.
The result of adding matrix X to matrix Y becomes new matrix X.
To perform addition, matrixes X and Y must be equal to each
other in both the number of rows and the number of columns.

G X - Y - X: Performs subtraction.
The result of subtracting some elements of matrix Y from the
corresponding elements of matrix X becomes the corresponding
elements of new matrix X.
To perform subtraction, matrixes X and Y must be equal in both
the number of rows and the number of columns.

(Example)

c: :J-[: 6 [1 ~3] -1]- 2

[X) X • Y - X: Performs multiplication.
To perform multiplication, the number of columns in matrix X
must be equal to the number of rows in matrix Y.

[TI X • y-1 - X: Performs the multiplication of matrix X and inverse
matrix Y.

To perform this operation, the number of columns in matrix x
must be equal to the number of rows in matrix y-1.

[@ x-1- X: Performs the inverse matrix calculation of matrix X.
The result of this operation becomes new matrix X.
To perform this operation, matrix X must be a square matrix
(which has the same number of rows as the number of col-
umns).

n rn n + X - X: Performs the addition of scalar n to matrix X
elements.

In this operation, n is added to each element of matrix X.
NOTE: Mathematically, such an operation as this does not

exist. The addition of scalars is one of the features
unique to the COMPUTER.

Matrix Calculations
While the message "MATRIX OPERATION" is on the display, pressing each of the
following keys causes the COMPUTER to perform the matrix operation designated by
the key.

Using as a Calculator

49

Key Function

n G n - X->X: Performs the subtraction of matrix X elements from
scalar n.

In this operation, each element of matrix Xis subtracted from n
and the result becomes the corresponding elements of new
matrix X.
NOTE: Mathematically, such an operation as this does not

exist. The subtraction of scalars is another feature uni-
que to the COMPUTER.

(Example)

2-[: :1]-[~1 -:J
n 00 n · X __, X: Performs the multiplication of matrix x elements by

scalar n.

n rn n · x-1 -+ X: Performs the multiplication of inverse matrix x-1

elements by scalar n.
To perform this operation, matrix X must be a square matrix.

rn X ~ Y: Exchange matrix X for matrix Y.

[TI X1 __, X: Performs the transposition of matrix X, giving the
transposed matrix as new matrix X.

[ID IXI -> X (Display): Displays the value of the determinant of
matrix X.

To perform this operation, matrix X must be a square matrix.

El -X->X: Reverses the positive or negative sign of each element
of matrix X.

l.PJ X · X _, X: Perform the squaring of matrix X.
To perform this operation, matrix X must be a square matrix.

8 X->M: Stores the value of matrix X in the memory location of
matrix M (while clearing the previous contents of matrix
M).

This key is used when you wish to retain the value of matrix X
even after the matrix calculation.

Using as a Calculator

50

MATRIX OPERATION

(The message "BUSY" appears
indicating that the computer is
performing a calculation.)

x+v-x
MATRIX OPERATION

Operation:

0 2

3 -5

Note: • Pressing the ~ key during the execution of a matrix calculation causes the
calculation to be suspended. At this point, the values of matrixes X, Y, and
M will be retained as those before the execution of the calculation.

• Press the n ~ [XI in this order to perform the division of matrix X
elements by scalar n.

• If most of the elements of a matrix have the same value, execute the n [±]
operation with all the matrix elements set as 0 and then correct only the value
of each element having a value other than n. This will facilitate the input of the
matrix elements.

On completion of the matrix calculation, the message "MATRIX OPERATION"
appears again on the display, indicating that the COMPUTER is ready for the next
matrix calculation. After the determinant value of matrix Xis displayed by pressing the
[]]key, the message "MATRIX OPERATION" will appear again if you press one of
the OJ, OJ,~, CE,~, and IENTERI keys.

Example 2: To calculate X + Y, using the values of the respective elements of
matrixes X and Y entered (stored in memory) in Example 1

Key Function

[BJ!) M--+X: Invokes the memory contents of matrix M into matrix X
(while clearing the previous contents of matrix X.)

[M±] X + M --> M: Adds the value of matrix X cumulatively to the
memory contents of matrix M.

To perform this operation, matrixes X and M must be equal to
each other in both the number of rows and the number of
columns.

Using as a Calculator

51

Example 4: To solve the following simultaneous linear equations with three unknowns
using matrix calculations

{

2x + Sy - z = -1
x - y + 4z = 12

3x + 2y + z = 9

CD

IT]

5

2

MATRIX OPERATION

SCALAR 2.

SCALAR 25.

SCALAR 0.04

0.04*x~x

MATRIX OPERATION

MATRIX:X(2_, 3)

X(1, 1) 0.2

0.

Operation:

The COMPUTER is now released from the MATRIX mode.

If you press any of the numeric keys or the 8 key while the message "MATRIX
OPERATION" is being displayed, the COMPUTER can perform scalar calculations.

Example 3: To calculate 1/25* X--. X, using the calculation result of matrix X in
Example 2

0.

-2. I X(1,2)

5. X(1, 1) IT]

MATRIX:X(2_, 3)

Now, let's see the result of addition.

Using as a Calculator

52

Note: Matrix calculations are based on the method of elimination being widely used.
However, due to the nature of numerical calculations by any computer, an error
may occur in the calculation of a determinant or an inverse matrix because of
truncation or some other reasons.

Thus, the solutions x, y, and z of the equations are as follows:
x = 3, y = -1 ' z = 2

2. X(3, 1) rn
-1. X(2, 1) m
3. X(1, 1) rn

MATRIX:X(3_, 1) rn
MATRIX OPERATION

I MATRIX OPERATION

I invx~x

I MATRIX OPERATION

Operation:
Press the I sH1FTI and [!] keys to put the computer in the MATRIX mode and then
enter the matrix element data of X and Y according to Example 1 .

Y= [~~] -~] 5
-1

2
X= [!

HINTS: Enter matrixes X and Y as shown below and calculate x-1 - y to obtain the
solutions x, y, and z of the equations.

Using as a Calculator

53

[(No. of rows of matrix X) x (No. of columns of matrix X) x 8 + 7] bytes
+ [(No. of rows of matrix l') x (No. of columns of matrix Y) x 8 + 7] bytes
+ [No. of rows of matrix M) x (No. of columns of matrix M) x 8 + 7] bytes
+ [No. of rows of resultant matrix) x (No. of columns of resultant matrix) x 8 + 7)
bytes

Memory Capacity Required for Matrix Calculations
• Because matrix calculations share the same memory area as that used for BASIC

programs, unused memory capacity (i.e., capacity determinable by MEM I ENTER)

in BASIC mode) must be larger than the capacity determined by the following
formula:

So the results obtained by computers may have such an error. Please
note that verification by any other method may be required depending on
how matrix calculations will be applied.
In the above example, when you obtain the determinant value by multiply
ing the original matrix X by 3, you can confirm that matrix Xis not a regular
matrix because the result of the multiplicaiton becomes 0 {rn ~l =O).

Note: Because a matrix calculation will not be completed by a single
operation (e.g., one-time multiplication), it will take some time
to complete the calculation. It will take about 6 seconds to solve for
the inverse matrix of a unit matrix consisting of 7 rows and 7
columns. This calculation time varies depending on the values of
matrix elements.

1.E10 J
-3.E10

1 J-1 = [-13.3E.1 ..

03. 0.33 ... 3

This matrix is not a regular matrix and thus has no inverse matrix
theoretically. With any computer, however, the value 1/3 is input as
"0.33 3" and thus an inverse matrix exists, resulting in the
following.

Example 5: To solve for the inverse matrix of [~

Using as a Calculator

54

Printing of Matrixes
To print the data (e.g., value of each element) of matrix X, prepare and execute the
following program. If you execute the program by typing "RUN" and pressing

I ENTER l. however, all the matrix data will be cleared from memory. So be sure to
execute the program with the ~ key.

100 "M":INPUT "ROW";ll
110 INPUT "COLUMN";JJ
120 FOR l=O TO 11-1
130 FOR J=O TO JJ-1
140 LPRINT "X(";l+1 ;",";J+1 ;")=";X(l,J)
150 NEXT J:NEXT !:END

If the data of matrix Y or Mis to be printed, change "X" at the two places in line 140 of
the above program to read "Y" or "M".

(Operation) Press the ~ 00 keys in the RUN mode, and the designated matrix
data will be output on the printer.

(2 x 2 x 8 + 7] + (2 x 2 x 8 + 7) + (2 x 2 x 8 + 7) = 117 bytes

I I I
Matrix X Matrix Y Resultant matrix

X= [2 3 J
5 1

Y~ [B 30 J
7 15 .

(matrix M undefined)

The required memory capacity will be calculated as follows:

Example 6: To calculate the multiplication of the following two matrixes (X · Y - X)

However, when neither matrix Y nor matrix M is used, the values (no. of rows and
no. of columns) in brackets of each unused matrix will be treated as O for the
capacity calculation. The resultant matrix is only required during the calculation and
will be cleared on completion of the calculation. For information, no resultant matrix
is required for the execution of ~ , IBM) , or rn . Two resultant matrixes are
required for matrix operations using rn and n [E]' since these operations involve
two calculations (i.e., inversion and multiplication).

• If the message "MEMORY OVER" appears on the display while in the MATRIX
mode, erase the variables or programs used in BASIC in order to increase the
unused memory capacity for matrix calculations.

Using as a Calculator

55

What is Manual Calculation?
The COMPUTER may be basically used in two ways. One way lets you store in
advance the whole calculation procedure or steps into the computer's memory as a
program, then lets the computer automatically execute it later. The other lets you
calculate step by step through manual key operations. The latter is called a manual
calculation.
Of course, in the CAL mode, all calculations are performed manually, but here only
those performed in the BASIC mode (RUN or PROgram mode) are called manual
calculations.

Manual Calculations in BASIC Mode

Error Message Cause of Error

IMPOSSIBLE • Matrixes do not match in size.
CALCULATION Matrixes do not match in size in addition, subtrac-

tion, or multiplication, or an attempt was made to
calculate the inverse matrix, or to perform the
squaring, of a matrix which is not a square
matrix.

MEMORY OVER • Insufficient memory
In X -7 M operation, memory space is not enough
to store matrix M, or no work area is available for
arithmetic operation.

DIVISION BY ZERO • 0 (zero) is used as divisor.
In an inverse matrix calculation, an attempt was
made to divide a number by zero.

OVER FLOW • Overflow has occurred during an arithmetic oper-
ation.

Error Messages
If an error occurs during the calculation of a matrix, one of the following messages
appears on the display, together with the "E" (Error) sign. Press the ~ key to
release the COMPUTER from the error condition and the "E" sign will go off and the
message "MATRIX OPERATION" will appear on the display. At this point, the matrix
data before the execution of the matrix calculation is retained in memory.

Using as a Calculator

56

Do not use dollar signs or commas when entering a calculation formula or
expression into the COMPUTER. These characters have special meaning in the
BASIC programming language. Now try these simple arithmetic examples.
Remember to clear with the ~ between calculations.

Before going into operation examples, let's touch on some important points in
operation.

Whereas we usually use operators +, - , x, or -:- for our mathematical calculations on
paper, we don't use the operators x and -:- for our arithmetic operations in BASIC.
Instead of x and +. we use an asterisk(*) and slash (/), respectively.

The operators * and I can be entered by pressing (R!J and G:Ll keys, respectively.
To get the result of a manual calculation, operate the I ENTER I key instead of
00 key.

~MOOEill ON DEL ms

[gl • ~ [fil] Im OJI s s 1E1 G!II
! II # 5 ~. & ".I ~ : ;

(]] GJ rII []] III (I] Cfil CD Cfil m
lt~PIJT 1F THEN GOTO FOR TO STEP NE:ii;T LIST RUN m m rn IIl rn [E] rn m CD rn

In the RUN mode, the key functions shown in the following figure are operative. (The
same is true in the PROgram mode.)

l'lUN

L Press~; an indicator will appear
with the RUN label.

How to Manually Calculate
Let's try manual calculation in the RUN mode. Press the BASIC key to place your
computer in the RUN mode.

Using as a Calculator

57

-----~-~-]
Display Input

The right arrow, [El , recalls the expression that has the cursor positioned "on top
of" its first character.

Remember that the left and right arrows are also used to position the cursor within a
line. The right and left arrows are very helpful in editing (or modifying) entries without
having to retype the entire expression.

You will become familiar with the use of the right and left arrows in the following
examples. Now, take the role of the manager and perform the calculations as we
discuss them.

As the head of personnel in a large marketing division, you are responsible for planning
the annual sales meeting. You expect 300 people to attend the three-day conference.
For part of this time, the sales force will meet in small groups. You believe that groups
of six would be a good size. How many groups would this be?

Recailing Eniries
Even after the COMPUTER has displayed the results of your calculation, you can
display your last entry again. To recall, use the left r-.;,;J and right L,... l arrows.

The left arrow, I~ , recalls the expression that has the cursor positioned after its last
character.

OJ oo 1SHIFT1 ~ rn 1ENTER1 1 0 0 .

rn m 1 sH1Ffl r ft..--:-~ 1ENTER1 6 . 2 a 3 1 s 5 3 0 1 I

~ [I)[!] !ENTER[8.

rn w m :-1 __ ; w [ENTER] 60.

[[] [U [*! OJ CQ.:1 I ENTER[6 0 0.

m w LQ J ! - : m w 1 ENTER] 5 0 .

w cu ['f_J w cu I ENTER I 1 0 0 .

Input Display

Using as a Calculator

58

6.

Display Input

Sixty seems like a reasonable number of groups, so you decide that each small group
will consist of five participants.

Recall is also useful to verify your last entry, especially when your results do not seem
to make sense. For instance, suppose you had performed this calculation:

60.

300/5_

Display Input

Type in a 5 to replace the 6. One caution in replacing characters-once you type a new
character over an existing character, the original is gone forever! You cannot recall an
expression that has been typed over.

Notice that after you move the cursor it becomes a flashing block I· Whenever you
position the cursor "on top of" an existing character, it will be displayed as a flashing
cursor.

I 3001s

Display

To calculate the new number of groups, you must replace the six with an odd number.
Five seems to make more sense than seven. Because you recalled by using the ~
arrow, the cursor is positioned at the end of the display. Use the ~ to move the
cursor one space to the left.

j 300/6_

Display Input

On second thought, you decide that groups containing an odd number of participants
might be more effective. Recall your last entry, using the GI] key

Using as a Calculator

59

600.

Display

On the other hand, suppose that you had entered this calculation:

60.

300/5

Display Input

Pressing INSert moves all the characters one space to the right, and inserts a
bracketed open slot. The flashing cursor is now positioned over this open space,
indicating the location of the next typed input. Type in your zero. Once the entry is
corrected, display your new result.

[3:;0/5

Disptav lnput

Use the INSert key to make space for the needed character.

Lii.l_ 5 _ ~l

Display Input

Because you recalled by using the [I-..! , the flashing cursor is now positioned over the
first character in the display. To correct this entry you wish to insert an added zero.
Using the ~ , move the cursor until it ls positioned over the zero. When making an
INSert, you position the flashing cursor over the character before which you wish to
make the insertion.

l~J_5_ ----- I ' !. :

Display Input

Even a tired, overworked manager like you realizes that six does not seem to be a
reasonable result when you are dealing with hundreds of people! Recall your entry
using the r-_.;: J

Using as a Calculator

60

rn rn rn m m m 1ENTER1 e R R o R 1

Errors
Recalling your last entry is essential when you get the dreaded ERROR message.
Let us imagine that, unintentionally, you typed this entry into the computer.

Input Display

Note: Pressing the SPaCe key, when it is positioned over a character, replaces the
character leaving a blank space. DELete eliminates the character and the
space it occupied.

60.

Display Input

Pressing DELete causes all the characters to shift one space to the left. It deletes the
character it is "on top of" and the space the character occupied. The flashing cursor
stays in the same position indicating the next location for input. Since you have no
other changes to make, complete the calculation.

I 3001s

Display Input

Now use the DELete key to get rid of one of the zeros.

13000/5

Display Input

The flashing cursor is now positioned over the first character in the display. To correct
this entry eliminate one of the zeros. Using the ~,move the cursor to the first zero
(or any zero). When deleting a character, you position the cursor "on top of" the
character to be deleted.

13000/5

Display Input

The results seem much too large. If you only have 300 people attending the meeting,
how could you have 600 "small groups"? Recall your entry using the ~ .

Using as a Calculator

61

I 45000. *.15_

Display Input

Of this amount you plan to use 15% for the final night's awards presentation. When
performing serial calculations, it is not necessary to retype your previous results, but
DO NOT clear between entries (do not use the §I at this time). What is the awards
budget?

45000.

Display Input

Part of your responsibility in planning this conference is to draw up a detailed budget for
approval. You know that your total budget is $150.00 for each attendant. Figure your
total budget:

If, upon recalling your entry after an ERROR 1, you find that you have omitted a
character, use the INSert sequence to correct it.

When using the computer as a calculator, the majority of the errors you encounter will
be ERROR 1 (an error in syntax). For a complete listing of error messages. see
Appendix A.

Serial Calculations
The computer allows you to use the results of one calculation as part of the· following
calculation.

ae. I

Display

When you use the ~ or ~J key, the flashing cursor indicates the point at which the
computer got confused. And no wonder, you have too many operators! To correct this
error use the DELete key.

~I 3_0_0_1 _1 -5 ------·-·---
Display

Naturally you are surprised when this message appears! ERROR 1 is simply the
computer's way of saying, "I don't know what you want me to do here". To find out
what the problem is, recall your entry using either the ~ or ~j arrow.

Using as a Calculator

62

Obviously, you will have to change either your plans or your allocation of resources!

-675. I

Display Input

Finally, you must allocate $2200 for the guest speaker and entertainment:

1525.

Display

Decorations will be $1225:

2750.

Grnrnrnrn j 6750.-4000_

Display

Continue allocating your budget. The hotel will cater you dinner for $4000:

6750.

Display

% d~D %
The o and D keys cannot be used in the calculation. The o key shou Id
be used as a character only and the C::J key is inoperative.
Example: 45000 rn 15 I SHIFTI 00 ---> ERROR1

Note:

Notice that as you type in the second calculation (*.15), the computer automati
cally displays the result of your first calculation at the left of the screen and includes it
in the new calculation. In serial calculations, the entry must begin with an opera
tor. As always, you end the entry with I ENTER I ;

Using as a Calculator

63

675+ 6750
45000

or 675+6750
45000

Compound calculations, however, must be entered very carefully:

675+6750/45000 might be interpreted as

675+6750/45000

Fine, you decide to allocate 16.5% to the awards presentation.

Compound Calculations and Parentheses
Jn performing the above calculations, you could have combined several of these
operations into one step. For instance, you might have typed both these operations on
one line:

Input Display

Dividing by 45000 gives you the percentage of the total budget this new figure
represents:

7425.

Display Input

Now you add this result to your original presentation budget:

e z s. I

-675.*-1 rn l.:-J en
c--- .. -·------

Display Input

Negative Numbers
Since you want the awards dinner to be really special, you decide to stay with the
planned agenda and spend the additional money. However, you wonder what
percentage of the total budget will be used up by this item. First, change the sign of the
remaining sum:

Using as a Calculator

64

A variable may be used in place of a number in any calculation.

Now that you have planned your awards dinner, you need to complete arrangements
for your conference. You wish to allocate the rest of your budget by percentages also.
First you must find out how much money is still available. Assign a variable (R) to be
the amount remaining from the total:

You can also assign the value of one variable (right) to another variable (left):

C=A+3
D=E

A=5
B=-2

Using Variables in Calculations
The computer can store up to 26 fixed variables under the alphabetic characters A to Z.
If you are unfamiliar with the concept of variables, they are more fully explained in
Chapter 4. You designate variables with an Assignment Statement:

Note: In BASIC (PRO or RUN) mode, the close parenthesis before the] ENTER Ikey
cannot be omitted. In CAL mode, however, you can omit it before the @
key.

W CTI IIJ C£J ITJ [§]

rnrnoomrnrnrnrn 675. 1s I

00 OJ I ENTER I

mwrnrnrnw
rnmoocomm 0.165
m oo oo oo 1ENTER1

Input Display

When performing compound calculations, the computer has specific rules of expres
sion evaluation and operator priority (see page 76). Be sure you get the calculation
you want by using parentheses to clarify your expressions.

(675+6750)/45000 or 675+(6750/45000)

To illustrate the difference that the placement of parentheses can make, try these two
examples:

Using as a Calculator

Variables will retain their assigned values even if the machine is turned OFF or
undergoes an AUTO OFF. Variables are lost only when you:

*assign a new value to the same variable.
• type in CLEAR I ENTER I (not the clear key (~)).
• clear the machine using the RESET button.
• change the batteries.

These are certain limitations on the assignment of variables, and certain programming
procedures which cause them to be changed. See Chapter 4 for a discussion of
assignment. See Chapter 5 for a discussion of the use of variables in programming.

65

9393.75

Display

Similarly, you want allocate 25% of your remaining budget to conduct management
training seminars:

22545.

Display input

You can then perform calculations using your variable. The value of (R) will not
change until you assign it a new value.

You wish to allocate 60% of the remaining money to room rental:

37575.

Display

As you press I ENTER I, the computer performs the calculation and displays the new
value of R. You can display the current value of any variable by entering the alphabetic
character it is stored under:

37575.

R=45000-7425_ rn]@1m mc:uoooo
c:-::·1 com rn m

Display

Using as a Calculator

66

The error state can be cleared with either the ~ or ~or [EJ key. If the ~ or
[El key is used to clear the error state, the portion of the formula where the error
occurred is recalled in the display (see the description for the recall feature).

Scientific Notation
People who need to deal with very large and very small numbers often use a special
exponential format called scientific notation. In scientific notation, a number is broken
down into two parts.

Error Message
If an error occurred as a result of a manual calculation, an error message will appear in
the display such as:

ERROR 1 or ERROR 2

38250.

Display Input

To find the value of R used in this calculation, enter R:

2 29 50.

Display Input

Although the computer performs all the calculations in the chain, it displays only the
final result:

w 00rn rnrnm rn
rn l0__] ra; 0 oo rn IR=. as* 4 s 0 0 0, R *.a 0 _
00000

Input Display

Chained Calculations
In addition to combining several operators in one calculation, the computer also allows
you to perform several calculations one after another-without having to press [ENTER I
before moving on. You must separate the equations with commas. Only the result of
the final calculation is displayed. (Remember too that the maximum line length
accepted by the computer is 80 characters including I ENTER! .)

You wonder how much money would have been available for rooms if you had kept to
your original allocation of 15% for the awards dinner:

Using as a Calculator

67

9.999999999E -99 = .000000000000000000000000000000000
000000000000000000000000000000000
0000000000000000000000000000000099
99999999

and the smallest number is:

9.999999999E 99 = 9999999999000000000000000000000000
0000000000000000000000000000000000
00000000000000000000000000000000

1234567890000 is displayed as 1.23456789E 12
.000000000001 is displayed as 1. E -12

Those of you who are unfamiliar with this type of notation should take some time to put
in a few very large and very small numbers to note how they are displayed.

Limits
The largest number which the computer can handle is ten significant digits, with two
digit exponents. In other words, the largest number is:

The computer uses scientific notation whenever numbers become too large to display
using decimal notation. This computer uses the capital letter E to mean "times ten to
the":

1.0 X 1087 Of 1.0E 87

The first part (called mantissa part) consists of a regular decimal number between 1
and 10. The second part (called exponent part) represents how large or small the
number is in powers of 10.

As you know, the first number to the left of the decimal point in a regular decimal
number shows the number of 1 's, the second shows the number of 10's, the third
the number of 100's, and the fourth the number of 1 OOO's. These are simply
increasing powers of 10:

10° = 1, 101 = 10, 102 = 100, 103 = 1000, etc.

Scientific notation breaks down a decimal number into two parts: one shows what the
numbers are, the other shows how far a number is to the left, or right, of the decimal
point. For example:

1234 becomes 1.234 times 103 (3 places to the right)
654321 becomes 6.54321 times 105 (5 places to the right)
.000125 becomes 1.25 times 10-4 (4 places to the left)

Scientific notation is useful for many short cuts. You can see that it would take a lot of
writing to show 1.0 times 1087 - a 1 and 87 zeros! But, in scientific notation, this number
looks like this:

Using as a Calculator

68

Press ~ • then the m or III key. If you operated these keys just after
completing the calculation example above, you should see "35." in your display.
The numeric data displayed is the result of the last calculation.

The computer can "remember" the last answer (result) obtained through a manual
calculation, and recall it on its display with the C!J or III key.

In the case of the serial calculation described above, you could use the result of the
previous calculation only as the first member of the subsequent calculation formula.
With the last answer feature, however, you can place the result of the previous
calculation in any position of the subsequent calculation formula.

35.

7.*5_ rn s

7. 3 rn 4 1 ENTERJ

Display Input

Last Answer Feature
In the case of the serial calculation, you could use the result of the calculation only as
the first member of the subsequent calculation formula.
Refer to the following example.

Under certain circumstances, when numbers will be used frequently, the computer
uses a special compact form. In these cases, there are special limits imposed on the
size of numbers, usually either 0 to 65535 or -32768 to +32767. Numbers within this
range can be represented in 16 binary bits. The circumstances in which this form is
used are noted in Chapter 8.

Using as a Calc11lator

69

As shown in this example, the last answer can be recalled as many times as required,
but will be replaced with a new last answer resulting from the last calculation.

The last answer is not cleared by the ~ or I sH•FTI ~ key operation.

Note: The last answer cannot be recalled when the program execution is temporarily
halted in other than the RUN mode, or when the program is under execution in
the TRACE mode.

The last answer is re
placed with the result
of the previous cal
culation by perform
ing a manual calcula
tion with the I ENTER I
key.

21. 12_

21.12 I

!12*5 I 6. 2 5 + 2 4 * 3 I 6. 2 5 _
Last answer recalled

rn 24 rn 3 LLJ m
Last answer recalled

12*5/6.25_ 12 LI<J 5 LLJ CD
Last answer ---1'

6. 25 50 [7 J 8 I ENTER I

Display Input

Example: Use the result (6.25) of the operation, 50 -;- 8, to compute 12 x 5 + 6.25
+ 24 x 3 -;- 6.25 =:

Using as a Calculator

70

Functions Notation Operation Remark

Trigonometric functions
sin SIN (il_iiJ

cos cos ~
tan TAN ~

Inverse trigonometric
functions

sin"" ASN (SHtFTI ~

cos:" ACS jsH1FTI ~

tan' ATN jSHIFT) ~

Hyperbolic functions
sinh HSN ~~
cosh HCS ~~
tanh HTN ~~

Length of Formula
The length of a formula you can put into your computer has a certain limitation. With the
computer, up to 79 key strokes can be used to enter a single calculation formula
(excluding the I ENTER I key). If you attempt the 80th key stroke, the cursor (I) will
start blinking on that character, indicating that the Bath key entry is not valid.

Scientific Calculations in the BASIC mode
This computer has many scientific functions which can be used in BASIC mode.

To perform scientific functions you must press I ENTER I at the end of the input, or your
calculations will not be acted upon by the computer.

These functions will be described as follows:

Using as a Calculator

71

Functions Notation Operation Remark

Inverse hyperbolicfunc-
tions

sinh-1 AHS I SHIFTI F~-~ ~
cosh " AHS I SHtFTJ ~~~ ~1
tanh " AHT I SHIFTI E~ ~

Logarithmic functions
In LN ~ logex
log LOG ~ IOQ10X

Exponential functions
e-' EXP I SHtFTJ Wl e~

2.718281828
1ox TEN I SHIFTI ~

Reciprocal 1 - RCP 117X! x

Square , Cl"\I I [2J .. - '-''"""

Square root -r: VorSQR (El

Cubic root ~/ CUR I SHIFTI ~

Factorial n! FACT I SHIFT I ITill

Pi rrorPI I SHIFTI 00 1T ~

3.141592654

DMS->DEG DEG ~

DEG-> DMS OMS I SHIFTI ~

Power Yx /I. I SHIFT I ~ or j-" y/l.x: y'

Power root {ty ROT I SHIFT I ~ yROTx :Vy
Rectangular coor-
din ates
_. Polar coordinates POL I SHIFT I ~

Using as a Calculator

72

OED

0.5

Example: sin 30°=
Operation: DEGREE I ENTER I (Specifies "degrees" for angular unit.)

SIN 30 I ENTER I

These commands are used to specify angular units in a program. For practice, use
them in the following calculation examples:

Angular unit Command
Display

Description Symbol

Degree DEGREE DEG Represents a right angle as 90 (0].

Radian RADIAN RAD Represents a right angle as rr/2 [rad].
Grad GRAD GRAD Represents a right angle as 100 [gl

Of these functions, the INT, ABS, SGN, and MDF can be entered by using letter
keys. Some other functions may also be entered with letter keys. For example, "sin
30" may be entered either by operating ~ 30 or W UJ[Fl 30. For trigonomet
ric and inverse trigonometric functions and coordinates conversion, the desired
angular unit must be specified in advance. In manual calculations, angular units may
be specified either by operating I sH1n)~ as in the CAL mode or with the following
commands:

Functions Notation Operation Remark

Polar coordinates
---+ Rectangularcoor- REC \SHIFT\ 0

din ates

Integer INT [DO[][!] INT(x)

Absolute lxl ABS rnmrn ABS(x)

Sign SGN on woo SGN(x)
x>O: 1
x=O: 0
x<O: -1

Modify (Rounding) MDF oo rn m

Using as a Calculator

73

*The value of 0 is stored in variable Z, and the value of r in variable Y.

69. 443954 78 un z I ENTER I

8. 544003745 (r]

Operation:

polar Conversion from rectangular into polar coordinates: Determine
coordinate (r,0) for point P (3, 8) on a rectangular coordinate:
DEGREE I ENTER I (Specifies "degrees" for angular unit.)
POL (3, 8) I ENTER I

Example:

Example: Convert 30.755 deg. in decimal notation into its sexagenary equivalent
(in degrees, minutes, seconds).

Operation: OMS 30.755 I ENTER! 3 0. 4 51 8

(30 deg. 45 min. 18 sec.)

Example: Convert 30 deg. 30 min. in sexagenary notation into its decimal equiva
lent (in degrees).

Operation: DEG 30.30 I ENTER I 3 0. 5
(30.5 degrees)

5. 738793548
I\ A

Operation: CUR (4 · · 3 + 5 · 3i 1 ENTERj

Example: {./ 43 + 53 =

148.4131591
Example: e2+3 =

Operation: EXP (2 + 3) I ENTER I

(Do not use the ~ key.)

2.308407917
Example: log 5 + ln 5 =
Operation: LOG 5 + LN 5 I ENTER I

(120° f

DEO

120.

Example:

"" 1.

1[
tan 4 =

RADIAN I ENTER I (Specifies "radians" for angular unit.)
TAN (Pl/4) IENTERI

Example: cos " (-0.5) =
Operation: DEGREE I ENTER I (Specifies "degrees" for angular unit.)

ACS-0.5 IENTERI

Operation:

Using as a Calculator

74

•If, for example, "A = numeric value" or "B = formula" is used in a logical
equation, the computer will not treat it as a logical equation but as an assignment
statement for variables. When using an equal (=) sign for a logical equation, use
it in the form of "numeric value = A" or· "formula = B", with the exception of
conditional expressions used in IF statements.

Direct Calculation Feature
In the manual calculations described up to now, we always used the I ENTER) key to
terminate a formula and obtain the calculation result of the formula. However, you can
directly operate the functions of the computer with the desired function key (without
operating the I ENTERl key) when the objective numeric data is in the display.

* 1 if x = y
>=

1 ifx~y
=

0 ifx:foy 0 ifx<y

>
1 ifx>y

<=
1 ifx~y

0 ifx~y 0 ifx>y

<
1 ifx<y

<>
1 ifx:foy "<>"

(means"::/=")
0 ifx~y 0 if x = y

Equations composed of logical operators (=, >, <, >=, <=, <>) can take on the
values listed in the following table:
x and y represent numeric values.

"The values of y and x are stored in variables Zand Y, respectively.

Note: For coordinates conversion, the conversion results are stored in variables Z
and Y. Therefore, the previous contents of Z and Y (or 2$ and Y$) will be
cleared.

- Reference -

(y =; 7.1)

7 .053423028 (Y) z I ENTER!

(x =: -9.7)

-9. 708203933 (x)

Example: Conversion from polar into rectangular coordinates: Determine rectangu
lar coordinates (x, y) for point P (12, 4/5ir) on polar coordinates.

Operation: RADIAN I ENTER) Specifies "radians" for angular unit.)
REC (12, (4/5*PI))

Using as a Calculator

75

e.g., ~ 5*4 ~ 5*4 _
[.§] ~ 5*4LOG _

The direct calculation feature is effective only for numeric values. Therefore, if hex
numbers A to F are entered for hex to decimal conversion, the direct calculation feature
will remain inoperative. In such a case, use the ordinary manual calculation using the
I ENTER I key.

Note: After a direct calculation is done, the recall feature is not operative. Operation
of the ~ or !El key will only display the cursor.

lt should be noted, however, that this "direct" calculation mode is not available tor
functions requiring the entry of more than one numeric value (binominai functions)
such as power, power root, or coordinates conversion.
The direct calculation feature is not effective for formulas:

22.61986495

4.166666667E-01
5/12 I ENTER I

Example: For tan-1 152 ,first check the result of 152, then determine tan-1 152 .

Operation: DEGREE !ENTER!

40320.

8_ Operation: ffi 8

0.5

Example: Determine sin 30° and 8!.
Operation: DEGREE I ENTER I

m 30

Using as a Calculator

76

Priority in Manual Calculations
In the BASIC mode, you can type in formulas in the exact order in which they are
written, including parentheses or functions. The order of priority in catculation and
treatment of intermediate results will be taken care of by the computer itself.

The internal order of priority in manual calculations is as follows:
1) Recalling variables or re.
2) Functions (SIN, COS, etc.)
3) Power ("') and power root (ROT)
4) Signs(+,-)
5) Multiplication and division (*, I)
6) Addition and subtraction (+, -)
7) Comparison of magnitude(>,>=,<,<=,<>)
8) Logical operations (AND, OR, NOT, and XOR)

Notes: • If parentheses are used in a formula, the operation given within the
parentheses has the highest priority.

•Composite functions are operated from right to left (sin cos:" 0.6).
• Chained power (342 or 3"" 4"2) or power root are operated from right to left.
• For the above items 3) and 4), the last entry in the calculation formula has

a higher priority.
(e.g.) -2 A 4 ---+ -(24)

3A-2-> 3-2

Using as a Calculator

77

&A= 10
&10 = 16
&100 = 256
&FFFF = 65535

The decimal system is only one of many different systems to represent numbers.
Another which has become quite important when using computers is the hexadecimal
numbering system. The hexadecimal system is based on 16 instead of 10. To write
hexadecimal numbers, you use the familiar 0 to 9 and 6 more "digits": A, B, C, D,
E, and F. These correspond to 10, 11, 12, 13, 14, and 15. When you want the
computer to treat a number as hexadecimal, put an ampersand '&' character in
front of the numeral:

Hexadecimal Numbers

"ISN"T"
No ending quote
Quote can't be used within a string

"COMPUTER

The following are not valid string constants:

"HELLO''
"GOODBYE"
"SHARP COMPUTER"

1 2 3 4 5 6 7 8 9 0
ABCDEFGHI J KLMNOPQRSTUVWXYZ

"#$%&()*+ -./:;<=>?@v7T""

In BASIC, a collection of characters is called a string. For the computer to tell the
difference between a string and other parts of a program, such as verbs or variable
name, you must enclose the characters of the string in quotation marks (").
The following are examples of string constants:

In addition to numbers, there are many ways that the SHARP COMPUTER uses letters
and special symbols. These letters, numbers, and special symbols are called
characters. These characters are available on the computer.

String Constants

In this chapter, we will examine some concepts and terms of the BASIC language.

', I I l ' ' I I • ~

I • ' ' ' CHAR'IE84 . '
.. ·. .. CONCEPTSANDTFE'RMSOFBASIC , .'

I

Concepts and Terms of BASIC

78

Computers are made up of many tiny memory areas called bytes. Each byte can be
thought of as a single character. For instance, the word byte requires four bytes of
memory because there are four characters in it. To see how many bytes are available
for use, simply type in MEM I ENTER]. The number displayed is the number of bytes
available for writing programs. This technique works fine for words, but is very
inefficient when you try to store numbers. For this reason, numbers are stored in a
coded fashion. Thanks to this coding technique, your computer can store large
numbers in only eight bytes. The largest number that can be stored is +9.999999999
E + 99.
The smallest number is + 1.E-99. This gives you quite a range to choose from.
However, if the result of a calculation exceeds this range, the computer will let you
know by turning on the error annunciator and by displaying the error message in the
screen. This annunciator is a small E in the upper right-hand corner of the screen. For
the error message, refer to Appendix A. To see it right now type in:

9 ~ 99 * 9 IENTERI

To get the computer working properly again, just press the !£:@ key. But how do you
go about storing all this information? It's really very easy. The computer likes to use
names for different pieces of data. Let's store the number 556 into the computer. You
may call this number by any name that you wish, but for this exercise, let's use the
letter R. The statement, LET, can be used to instruct the computer to assign a value to
a variable name but only in a program statement. However, the LET command is not
necessary, so we will not use it very often. Now, type in R = 556 and press the
I ENTER I. The computer now has the value 556 associated with the letter R. These
letters that are used to store information are called variables. To see the content of the
variable R, press the ~ key, the letter R key, and the I ENTER I key. The computer
responds by showing you the value 556 on the right of your screen. This ability can
become very useful when you are writing programs and formulas.

Next, let's use the R variable in a simple formula. In this formula, the variable R
stands for the radius of a circle whose area we want to find. The formula for the area of a
circle is: A="* R2. Type in R ISHIFTI ~ 2 rn I SHIFTI 00 I ENTERI. The result is
971179.3866. This technique of using variables in equations will become more
understandable as we get into writing programs.

Variables

Those with some computer background may notice that the last number (65535) is the
same as the largest number in the special group of limits discussed in the paragraph
"Limits" on page 67. Hexadecimal notation is never absolutely necessary in using the
computer, but there are special applications where it is convenient.

Concepts and Terms of BASIC

79

This means that you have put numeric data into the area of memory called A and then
told the computer to show you that information again as STRING data. This confuses
the computer so it says that there is an error condition. Press the ~ key to clear the
error condition. Now try the following example:

A$ = "ABC" I ENTER I
A I ENTER I

ERROR 9

Fixed Variables
The first section, fixed variables, is always used by the computer for storing data. It can
be thought of as pre-allocated variable space. In other words, no matter how much
memory your program uses up, you will always have at least 26 variables to choose
from to store data in. This data can be one of two types: NUMERIC or STRING
(alphabetic character). Fixed memory locations are eight bytes long and can be used
for only one type of data at a time. To illustrate this, type in the following examples:

A= 123 [ENTER)

A$ [ENTER)

You get the message:

Numeric
variables

Fixed numeric variables (A to Z)
Simple numeric variables (AB, C1, etc.)
Numeric array variables
Fixed character variables (A$ to Z$)
Simple character variables (BB$, C2$, etc.)
Character array variables

String
variables

Variables

S II II

To illustrate this, key in B lsH1FTI [l[] = lsH1FTI rwi BYTE [sH1nl I Wl I ENTER].

The value BYTE is now stored in the variable 8$. To make sure of this, type in B I SHIFT I
d:J I ENTER). The screen shows BYTE. This time the display is on the left side of the
screen, instead of the right.

Variables handled by the SHARP COMPUTER are divided into the following;

So far, we've only discussed numeric variables. What about storing alphabetic

characters? Well, the idea is the same, but, so the computer will know the difference

between the two kinds of variables, add a$ to the variable name. For instance, let's

store the word BYTE in the variable 8$. Notice the$ after the B?

This tells the computer that the contents of the letter B are alphabetic, or string data.

Concepts and Terms of BASIC

80

Simple Variables
Simple variable names are specified by two or more alphanumeric characters, such as
AA or 81. Unlike fixed variables, simple variables have no dedicated storage area in
the memory. The area for simple variables is automatically set aside (within the
program and data area) when a simple variable is first used.
Since separate memory areas are defined for simple numeric variables and simple
character variables even if they have the same name, variables such as AB and AB$,
for example, may be used at the same time.
Whereas alphanumeric characters are usable for simple variable names, the first
character of a variable name must always be alphabetic and uppercase. If more than
two characters are used to define a variable name, only the first two characters are
meaningful.

A =A$ = A(1) = A$(1)
B = 8$ = A(2) · = A${2)
c = C$ = A(3) = A$(3)
D = 0$ = A(4) = A$(4)
E = E$ = A(5) = A$(5)
F = F$ = A{6) = A$(6)
G = G$ = A(7) = A$(7)
H = H$ = A(8) = A$(8)

= 1$ = A(9) = A$(9)
J = J$ = A(10) = A$(10)
K = K$ = A(11) = A$(11)
L = L$ = A(12) = A$(12)
M = M$ = A(13) = A$(13)
N = N$ = A(14) = A$(14)
0 = 0$ = A(15)" = A$(15)
p P$ = A(16) = A$(16)
Q = 0$ = A(17) = A$(17}
R = R$ = A(18) = A$(18)
s = S$ = A(19) = A$(19)
T = T$ = A(20) = A$(20)
u = U$ = A(21) = A$(21)
V = V$ = A(22) = A$(22)
W = W$ = A(23) = A$(23}
x = X$ = A(24) = A$(24)
y = Y$ = A(25) = A$(25)
Z = Z$ = A(26) = A$(26)

Concepts and Terms of BASIC

Again, the computer is confused and gives the ERROR 9 message. Look at the figure
shown below to see that the variable name A equals the same area in memory as the
variable name A$, and that B equals 8$, and so on for all the letters of the alphabet'.
Figure:

81

X(4) = 8

The first statement creates an array X with 6 storage locations. The second statement
creates an array AA with 25 locations. The third statement creates an array with one
location and is actually rather silly since (for numbers at least), it is the same as
declaring a single-value numeric variable.

It is important to know that array variable X and variable X are separate, and unique to
SHARP. The first X denotes a series of numeric storage locations, and the second a
single and ditterent location.
Now that you know how to create arrays, you might be wondering how to refer to each
storage location. Since the entire group has only one name, the way in which we refer
to a single location (called an "element") is to follow the group name with a number in
parentheses. This number is called "subscript". Thus, for example, to store the
number 8 into the fifth element of our array X (declared previously), we would write:

DIM X(5)
DIM AA(24)
DIM 05(0)

numeric-variable-name is a variable name which conforms to the normal rules for
numeric variable names previously discussed.

size is the number of storage locations and must be a number in the range 0 through
255. Note that when you specify a number for the size, you get one more location
than you specified.

Examples of legal numeric DIMension statements are:

Array Variables
For some purposes, i1 is useful to deal with numbers as an organized group, such as a
list of scores or a lax table. In BASIC these groups are called arrays. An array can be
either one-dimensional, like a list, or two-dimensional, like a table.

To define an array, the DIM (short for dimension) statement is used. Arrays must
always be "declared" (defined) before they are used (no1 like the single-value
variables we have been using). The form for the numeric DIMension statement is:

DIM numeric-variable-name (size)

where:

Notes: • The functions and BASIC commands inherent to the computer are not
usable as variable names.
e.g., Pl, IF, TO, ON, SIN, etc.

• Each simple character variable can hold up to 16 characters and symbols.

Concepts and Terms of BASIC

82

The first example creates an array of five strings, each able to store 16 characters. The
second DIM statement declares an array NM with eleven strings of 10 characters each.
Explicit definition of strings smaller than the default helps to conserve memory space.
The third example declares a two-element array of 80-character strings and the last
example declares a single string of twenty-six characters.

Besides the simple arrays we have just studied, the computer allows "two-dimen
sional" arrays. By analogy, a one-dimensional array is a list of data arranged in a
single column. A two-dimensional array is a table of data with rows and columns. The
two-dimensional array is declared by the statement:

DIM X$(4)
DIM NM$(1O)*i0
DIM IN$(1)*80
DIM R$(0)*26

If the use of 4 is puzzling, remember that the numbering of elements begins at zero and
continues through the size number declared in the DIM statement.

The real power of arrays lies in the ability to use an expression or a variable name as a
subscript.

To declare a character array, a slightly different form of the DIM statement is used:

DIM character-variable-name (size) * length

where:

character-variable-name is a variable name which conforms to the rules for normal
character variables as discussed previously.

size is the number of storage locations and must be in the range Oto 255. Note that
when you specify a number, you get one more location than you specified.

*length is optional. If used, it specifies the length of each of the strings that
compose the array. Length is a number in the range 1 to 80. If this clause is not
used, the strings will have the default length of 16 characters.

Examples of legal character array declarations are:

Concepts and Terms of BASIC

83

• For example, if DIM Z$ (2,3}*10 is specified, 12 variables, each capable of
storing 1 O characters, are reserved. This requires 7 bytes (variable name) + 10
bytes (number of characters) x 12 = 127 bytes.

Variable Variable name Data

Numeric variable 7 bytes 8 bytes

Array variable Specified number

String variable 7 bytes Simple variable
(two-character 16 bytes

variable)

Note: Two-dimensional arrays can rapidly eat up storage space. For example, an
array with 25 rows and 35 columns uses 875 storage locations!

Arrays are very powerful programming tools.

The following table shows the number of bytes used to define each variable and the
number used by each program statement.

Row2

Rowl

I T (0. 0) T (0, 1) I T (0, 2) TIO, 3) I I

T (1. 0) T (1, 1) T (1, 2) T (1, 3)

T (2,0) T (2, 1) T (2, 2) T (2, 3)

RowO

Column4 Column3 Column2 Columnl

DIM character-variable-name (rows, columns)*length

where:

rows specifies the number of rows in the array. This must be a number in the range O
through 255. Note that when you specify the number of rows you get one more row
than the specification.

columns specifies the number of columns in the array. This must be a number in the
range O through 255. Note that when you specify the number of columns you get
one more column than the specification.

The following diagram illustrates the storage locations that result from the declaration
DIM T (2, 3) and the subscripts (now composed of two numbers} that pertain to each
storage location:

or

DIM numeric-variable-name (rows, columns}

Concepts and Terms of BASIC

84

10 DIM 8(2)
20 A(28)=5
30 BC-=12
40 A(30)=9

There are 26 fixed variable names available, i.e., A through Z (A$ through Z$). Each
of these names can be subscripted with numbers 1 through 26, such as A(1) - A(26)
or A$(1) - A$(26). This means that variable A(1) may be used in place of variable
A, A(2) in place of B, A(3) in place of C, and so forth.

However, if an array named A or A$ has already been defined by the DIM statement,
subscripted variables named A cannot be defined. For example, if array A is defined by
DIM A(5), the locations for A(O) through A(5) are set aside in the program/data
area. So if you specify variable A(2), it does not refer to fixed variable B, but refers to
the array variable A(2) defined in the program/data area. If you specify A(9), it will
cause an error since A(9) is outside the range of the dimension specified by the DIM
A(5) statement.

In turn, if subscripted variables are already defined in the form of A(), it is not
possible to define array A or A$ by using the DIM statement, unless the definition for the
subscripted variables is cleared with the CLEAR statement.

" Using subscripts in excess of 26:
If subscripts greater than 26 are used for subscripted variables A() when array A
is not defined by a DIM statement, the corresponding locations in the program/data
area are set aside for these A() variables. For instance, if you execute A(35) =
5, locations for variables A(27) to A(35) will be reserved in the program/data
area.
While variables subscripted in excess of 26 are treated as array variables, they are
subject to the following special restrictions:

(1) Locations for an array with the same name must be contiguous in the program/
data area. Otherwise, an error will occur.

Variables In the Form ot A()
Whereas a data area on the computer's memory is set aside for fixed variables, it may
also be used to define subscripted variables which have the same form as array
variables.

Element Line number Statement & function Others, I ENTER)

Number of bytes used 3 bytes 1 byte or 2 bytes 1 byte

Concepts and Terms of BASIC

85

An expression is some combination of variables, constants, and operators which can
be evaluated to a single value. The calculations which you entered in Chapter 3 were
examples of expressions. Expressions are an intrinsic part of BASIC programs. For
example, an expression might be a formula that computes an answer to some
equation, a test to determine the relationship between two quantities, or a means to
format a set of strings.

-~ ~
Expressions

(4) Variables subscripted with zero (O) cannot be defined. If A(O) or A$(0) is
defined, an error will result.

(5) When subscripts greater than A(27) or A$(27) are first used, 7 bytes are used
for the variable name, and 8 bytes are used for each variable.

defined at the same time as they use the same location in the program/data area.

(3) Two dimensional arrays cannot be defined, nor is it possible to specify the length
of character strings to be held in character array variables. For example, the
length of a character string which can be held in character array variable A$() is
limited to seven characters or less.

cannot be defined at the same time. Fer example, P.~{30) and .ll.$(30) cannot be
(2) Numeric array variables and character array variables with the same subscript

A(30) --------------
A(29)
BC
A(28)
A(27)
B(2)
B(1)

'-·-~J-~-

[Program/data area]

If this program is executed, the array named "A" is not defined in two consecu
tive segments in the program data area, and an error will result at line 40.

Concepts and Terms of BASIC

86

Relational Expressions
A relational expression compares two expressions and determines whether the stated
relationship is True or False. The relational operators are:

> Greater Than
>= Greater Than or Equal To

Equals
<> Not Equal To
<= Less Than or Equal To
< Less Than

"15" + 10 is illegal
"15" + "10" is "1510", not "25"

String Expressions
String expressions are similar to numeric expressions except that there is only one
string operator - concatenation (+).This is the same symbol as used for plus. When
used with a pair of strings, the+ attaches the second string to the end of the first string
and makes one longer string. You should take care in making more complex string
concatenations and other string operations because the work space used by the
computer for string calculations is limited to only 79 characters.

Note: String quantities and numeric quantities cannot be combined in the same
expression unless one uses one of the functions which convert a string value
into a numeric value or vice versa:

(A * B}"' 2
A(2,3) + A (3,4) + 5.0-C
(A/B) * (C+D)

A numeric expression is constructed in the same way that you entered compound
calculator operations. Numeric expressions can contain any meaningful combination
of numeric constants, numeric variables, and these numeric operators:

Numeric Operators
The computer has five numeric operators. These are the arithmetic operators which
you used when exploring the use of the computer as a calculator in Chapter 3:

+ Addition
- Subtraction * Multiplication
I Division
,,.... Power

Concepts and Terms of BASIC

87

of B

Note: Value of A and B must be 0 (false) or 1 (true}.

True False

True False True

False True False

Value

Value of A AXOR B

of B

True False

True True True

False True False

Value

True False

True True False

False False False

Value

of B

Value of A AOR B Value of A AAND B

Relational expressions evaluate to eitherTrue or False. The computer represents True
by a 1; False is represented by a 0. In any logical test, an expression which evaluates
to 1 or more will be regarded as True, whereas one which evaluates to O or less will be
considered False. Good programming practice, however, dictates the use of an
explicit relational expression instead of relying on this coincidence.

Logical Expressions
Logical expressions are relational expressions which use operators AND, OR,
XOR, and NOT. AND, OR, and XOR are used to connect two relational expres
sions; the values of the combined expressions are as shown in the following tables.

"ABCOEF" = "ABCDEF"
"ABCOEF" <> "ABCDE"
"ABCDEF" > "ABCDE"

A<B
C(1,2)>;: 5
0(3)<>8

If A was equal to 1 O, B equal to 12, C(1,2) equal to 6, and 0(3) equal to 9, all of
these relational expressions would be True.
Chapter strings can also be compared in relational expressions. The two strings are
compared character by character according to their ASCII value starting at the first
character (see Appendix B for ASCII values). If one string is shorter than the other, a
o or NUL will be used for any missing positions. All of the following relational
expressions are True:

The following are valid relational expressions:

Concepts and Terms of BASIC

88

This results in an equation of NOT X = -X-1, i.e.,
NOT X = - (X + 1)

Thus, 1 is inverted to 0, and O to 1 for each bit, which is called "negation (NOT
operation}." Then, the following will result when 1 and NOT 1 are added together:

0000000000000001 (1)
+} 1111111111111110(NOT1) ones complement

1111111111111111 (-1) twos complement

Thus, all bits become 1. According to the above number list, the bits become -1 in
decimal notation, that is, 1 + NOT 1 = -1.

The relationship between numerical value X and its negated (or inverted) value NOT X
is:

X +NOT X = -1

The negation (NOT) of a binary number 0000000000000001 is taken as follows:

NOT 0000000000000001
(Negative)-> 1111111111111110

Decimal 16-bit binary
notation notation

32767 0111111111111111

3 0000000000000011
2 0000000000000010
1 0000000000000001
0 0000000000000000

-1 111;111111111111
-2 1111111111111110
-3 1111111111111101

-32768 1000000000000000

•Decimal numbers can be expressed in the binary notation of 16 bits as follows:

The XOR instruction cannot be used in combination with the AND or OR instruction in
an expression. To execute expression D=(A XOR B) AND C, for example, divide the
expression into two parts for execution: D=A XOR Band D=O ANO C.

Concepts and Terms of BASIC

89

When evaluating complex expressions, the computer follows a predefined set of
priorities which determine the sequence in which operators are evaluated. This can be
quite significant:

Parentheses and Operator Precedence

If you are a proficient programmer, there are certain applications where this type of
operation can be very useful. Beginner programmers should stick to clear, simple
True or False relational expressions.

41 and 27 are first converted into binary numbers. Then, for each digit, logical O is left if
both bits are 1 or 0.

17 and 22 are first converted into binary numbers. Then for each digit, logical 1 is left if
either bit is 1. Otherwise, logical 0 is left.

For example, if A is 41 and B is 27, (A XOR B) is 50:

41 XOR 27 is 101001 .. 41 }XOR .
011011 .. 27 · operation
11001 O .. 50 in decimal number

17 OR 22 is 10001 .. 17 1 OR ti
10110 .. 22 1 opera on

10111 .. 23 in decimal number

The COMPUTER implements logical operators as "bitwise" logical functions on 16-
bit quantnies, (See note on relational expressions and True and False.) In normal
operations, this is not significant because the simple 1 and O (True and False) which
result from a relational expression uses only a single bit. If you apply a logical operator
to a value other than 0 or 1, it works on each bit independently. For example, if A is 17
and B is 22, (A OR B) is 23:

(A<9) AND (B>5)
(A>=10) AND NOT (A>20)
(C=5) OR (C=6) OR (C=7)
(X>=50) XOR (X<70)

More than two relational expressions can be combined with these operators. You
should take care to use parentheses to make the intended comparison clear.

From the equation, the following results are obtained:
NOT 0 = -1
NOT -1 = 0
NOT -2 = 1

Concepts and Terms of BASIC

90

You must use parentheses for functions which have more than one argument.
Using parentheses always makes programs clearer.

See Chapter 8 for a complete list of functions available on the computer.

ABS (-5) is 5
ABS (6) is 6

LOG is a function which computes the log to the base 10 of its argument.

LOG (100) is 2
LOG (1000) is 3

A function can be used any place that a variable can be used. Many functions do not
require the use of parentheses:

LOG 100 is the same as LOG (100)

Functions are special components of the BASIC language which take one value and
transform it into another value. Functions act like variables whose value is determined
by the value of other variables or expressions. ABS is a function which produces the
absolute value of its argument:

Functions

The 1 means that the expression is True.

1 . (5>3) AND (2<6)

Display Input

In general, any of the above expressions can be used in the RUN mode well as in
programming a BASIC statement. In the RUN mode an expression is computed and
displayed immediately. For example:

RUN Mode

5 + (2 * 3) or (5 + 2) * 3

The exact rules of "operator precedence" are given in Appendix D.

To avoid having to remember all these rules and to make your program clearer, always
use parentheses to determine the sequence of evaluation. The above example is
clarified by writing either:

2*3=6
6+5=11 or

5 + 2 * 3 cou Id be
5+2=7
7 * 3 = 21

Concepts and Terms of BASIC

91

Each line of a program must have a unique line number-any integer between 1 and
65279. Line numbers are the reference for the computer. They tell the computer the
order in which to execute the program. You need not enter lines in sequential order
(although if you are a beginning programmer, it is probably less confusing for you to do
so). The computer always begins execution with the lowest line number and moves
sequentially through the lines of a program in ascending order.

When programming, it is wise to allow increments in your line numbering (10, 20, 30,
... 10, 30, 50, etc.). This enables you to insert additional lines if necessary.
CAUTION: Do not use the same line numbers in different programs. If you use the
same line number, the oldest line with that number is deleted when you enter the new
line.

line Numbers

The computer interprets instructions according to a predetermined format. This format
is called a statement. You always enter BASIC statements in the same pattern.
Statements must start with a line number:

H1l: PRINT "HELLO"
20: END
30:

-BASl~t~ ~ - - - --

A program consists of a set of instructions to the computer. Remember the computer
is only a machine. It will perform the exact operations that you specify. You, the
programmer, are responsible for issuing the correct instructions.

Programs

In the previous chapter, we examined some of the concepts and terms of the BASIC
programming language. In this chapter, you will use these elements to create
programs on the computer. Let us reiterate, however, that this is not a manual on how
to program in BASIC. What this chapter will do is to familiarize you with the use of
BASIC on your computer.

CHAPTERS .
PROGRAMMING THE COMPUTER

Programming the Computer

92

•Mt!tt•
The RUN mode is used to execute the programs you create.

The PROgram mode is used to enter and edit your programs.

Some verbs may also be used as commands. (See Chapter 8 for a complete listing of
BASIC commands and their use on the computer.)

RUN
NEW
RADIAN

Commands are instructions to the computer which are entered outside of a program.
Commands instruct the computer to perform some action with your program or to set
modes which affect how your programs are executed.

Unlike verbs, commands have immediate effects-as soon as you complete entering
the command (by pressing the I ENTER I key), the command will be executed.
Commands are not preceded by a line number:

BASIC Commands

Operands provide information to the computer telling it what data the verb will act upon.
Some verbs require operands; with other verbs they are optional. Certain verbs do
not allow operands. (See Chapter 8 for a complete listing of BASIC verbs and their use
on the computer.)

10: PRINT "HELLO"
20: END
30:

Some statements require or allow an operand:

10: PRINT "HELLO"
20: END
30:

All BASIC statements must contain verbs. Verbs tell the computer what action to
perform. A verb is always contained within a program, and as such is not acted upon
immediately.

BASIC Verbs

Programming the Computer·

93

RUN I ENTER\ I HELLO

Display Input

c.AL RUN PR0li£Eli

I> ..
Now press the ~ key to set the RUN mode.

Notice that when you press I ENTER J , the computer displays your input, automatically
inserting a colon (:) between the line number and the verb. Verify that the statement
is in the correct format.

110 PRINT "HELLO" - 10 PRINT "HELLO"

Display input

Make sure the computer is in the PRO mode and enter the following program:

Example 1 - Entering and Running a Program

The NEW command clears the computer's memory of all existing programs and data.
The prompt appears after you press I ENTER I. indicating that the computer is awaiting
input.

r> _
NEW I ENTER I

Display Input

The above display shows that the computer is in PROgram mode.
(If a dash indicator is at the CAL or RUN label, press the ~ key once or twice.)
Enter the NEW command.

>

Now you are ready to program.
Slide the POWER SWITCH to the ON position and then press the ~ key twice. You
will see the following initial information in the display.

After all your practice in using the computer as a calculator, you are probably quite at
home with the keyboard. From now on, when we show an entry, we will not show
every keystroke. Remember to use I stt1n I to access characters above the keys and
END EVERY LINE BY PRESSING THE I ENTERJ KEY.

, lfJ~ginrning to Program on the CdmJputer 1

Programming the Computer

94

ERROR 1 IN 10 RUN IEHTERI

Display Input

Don't forget to press I ENTER I at the end of the line. If you now change to the RUN
mode by pressing ~ and enter the RUN command, the following appears:

110 PR I NT"GOOD"!- GOOD"!

Display Input

Notice that the cursor is now in the flashing block form indicating that it is "on top of" an
existing character. Type in:

j 1 0 PR I NT ",H,.E LL 0"

j 10: PR I NT "HELLO" OJ

Display Input

Are you still in the RUN mode? If so change to the PROgram mode.

You need to recall your program in order to edit it. Use the Up Arrow (t) to recall your
program. If your program was completely executed, the OJ key will recall the last
line of the program. If there was an error in the program, or if you used the BREAK
(~iii) key to stop execution, the IT] key will recall the line in which the error or
BREAK occurred. To make changes in your program, use the CD key to move up in
your program (recall the previous line) and the m key to move down in your
program (display the next line). If held down, the OJ and CD keys will scroll
vertically, that is, they will display each line moving up or down in your program.

You will remember that to move the cursor within a line, you use the ~ (right arrow)
and .,,.. (left arrow). Using the [El key, position the cursor over the first character you
wish to change:

Suppose you wanted to change the message that your program was displaying, that
is, you wanted to edit your program. With a single line program, you could just retype
the entry, but as you develop more complex programs, editing becomes a very
important component of your programming. Let's edit the program you have just
written.

Example 2-Editing a Program

Since this is the only line of the program, the computer will stop executing at this point.
Press I ENTER I to get out of the program and reenter RUN if you· wish to execute the
program again.

Programming the Computer

95

Remember to press I ENTER I, so the correction will be entered into the program.

NOTE: If you wish to DELete an entire line from your program, just type in the line
number and the original line will be eliminated.

10 PRINT"GOODI"

Display Input

Type in the !. The display looks like this:

10 PRINT"GOOD.::;:"

Display Input

Press the ~ key. ·"· = will indicate the spot where the new data will be entered:

10 PRINT"GOOD·"

Display 1nput

Now let's put the "!" in the correct location. When editing programs, DELete and
INSert are used in exactly the same way as they are in editing calculations (see
Chapter 3). Using the I~', position the cursor on top of the character which will be
the first character following the insertion.

10 PR!NT"GOOD"_

Display Input

The flashing cursor is positioned over the problem area. In Chapter 4, you learned that
when entering string constants in BASIC, all characters must be contained within
quotation marks. Use the [fill key to eliminate the "!":

[I]

Display Input

This is a new kind of error message. Not only is the error type identified (our old friend
the syntax error) but the line number in which the error occurs is also indicated.

Press the [C:-cE! and then return into the PROgram mode. You must be in the PROgram
mode to make changes in a program. Using the [I] , recall the last line of your
program.

Programming the Computer

96

The value assigned to a variable can change during the execution of a program, taking
on the value typed in or computed during the program. One way to assign a variable is
to use the INPUT verb. In the following program, the value of A$ will change in
response to the data typed in answer to the inquiry "WORD?".
Enter this program:

10 INPUT "WORD?"; A$
20 B= LEN (A$)
30 PRINT "WORD IS "; B; " LTRS"
40 END L..J LJ L

means space

Before you RUN the program, note several new features. Line 30 of this program
exceeds the 24-character maximum of the computer's display. When a line is longer
than 24 characters (up to the 79-character maximum), the computer moves the
characters to the left as the 24-character maximum is exceeded. This does not destroy
the previous input. This move to the left is referred to as horizontal scrolling.

The second new element in this program is the use of the END statement to signal the
completion of a program. END tells the computer that the program is completed. It is
always good programming practice to use an END statement.

As your programs become more complex, you may wish to review them before
beginning execution. To look at your program, use the LIST command. LIST, which
can only be used in the PROgram mode, displays programs beginning with the lowest
line number.

A$= "TOTAL"

To assign a string variable, you also use a letter, followed by a dollar sign. Do not use
the same letter In designating a numeric and a string fixed variable. You cannot
designate A and A$ in the same program.

Remember that each string fixed variable must not exceed 7 characters in length:

A=5

If you are unfamiliar with the use of numeric and string variables in BASIC, reread
these sections in Chapter 4.

Using variables in programming allows much more sophisticated use of the compu
ter's computing abilities.

Remember, you assign numeric fixed variables using any letters from A to Z:

Example 3- Using Variables in Programming

Programming the Computer

97

Now RUN the modified program.

The GOTO statement causes the program to loop (keep repeating the same opera
tion). Since you put no limit on the loop, it will keep going forever (an "infinite"
loop). To stop this program, hit the BREAK (~) key.

When you have stopped a program using the ~ key, you can restart it using the
CONT command. CONT stands for CONTinue. With the CONT command, the
program will restart on the line that was being executed when the ~ key was

pressed.

40: GOTO 10

This is the end of your program. Of course, you may begin it again by entering RUN.
However, this program would be a bit more entertaining if it presented more than one
opportunity for input. We will now modify the program, so it will keep running without
entering RUN after each answer.

Return to the PRO mode and use the up or down arrow (or LIST) to reach line 40.

You may type 40 to delete the entire line or use the ~ key to position the cursor over
the E in END. Change line 40 so that it reads:

>

WORD IS 4. LTRS

WORD?_ RUN [ENTER]

HELP I ENTER I

Display Input

Use the [I] and [I] keys to move through your program until you have reviewed the
entire program. To review a line which contains more than 24 characters, move the
cursor to the extreme right of the display and the additional characters will appear on
the screen. After checking your program, run it:

j 10: INPUT "WORD?" LIST I ENTER I

Display Input

Try listing this program:

Programming the Computer

98

In addition to executing different programs by giving their starting line number, you can
give programs an alphabetical name and start them with the ~ key (see Chapter
6).

Several new features are contained in this program. The WAIT verb in line 100 controls
the length of time that displays are held before the program continues. The numbers
and their factorials are displayed as they are computed. The time they appear on the
display is set by the WAIT statement to approximately 2 seconds, instead of waiting for
you to press I ENTER I.
Also in line 100, notice that there are two statements on the same line separated by a
colon (:).You may put as many statements as you wish on one line, separating
each by a colon, up to the SO-character maximum including I ENTER I . Multiple
statement lines can make a program hard to read and modify, however, so it is a good
programming practice to use them only where the statements are very simple or there is
some special reason to want the statements on one line.

Also in this program, we have used the FOR verb in line 120 and the NEXT verb in line
150 to create a loop. In Example 3, you created an "infinite" loop which kept
repeating the statements inside the loop until you pressed the ~ key. With the FOR/
NEXT loop, the computer adds 1 to N each time execution reaches the NEXT verb. It
then tests to see if N is larger than the limit L. If N is less than or equal to L, execution
returns to the top of the loop and the statements are executed again. If N is greater than
L, execution continues with line 160 and the program stops.

You may use any numeric variable in a FOR/NEXT loop. You also do not have to start
counting at 1 and you can add any amount at each step. See Chapter 8 for details.

We have labeled this program with line numbers starting with 100. Labeling programs
with different line numbers allows you to have several programs in memory at one time.
To RUN this program instead of the one at line 10 enter:

RUN 100

Although the computer has a factorial function, we will use an example of the factorial
computation in this section to explain more complex programming. ·The following
program computes N Factorial (N!). The program begins with 1 and computes N! up
to the limit which you enter. Enter this program.

100 F = 1: WAIT 118
110 INPUT "LIMIT?"; L
120 FOR N = 1 TO L
130F=F*N
140 PRINT N, F
150 NEXT N
160 END

Example 4- More Complex Programming

Programming the Computer

99

Programs remain in memory when you turn off the computer, or it undergoes an AUTO
OFF. Even if you use the ~ , ~ , or ~ key, the programs will remain in
memory.

Programs are lost from memory only when you:

* enter NEW before beginning programming.
*initialize the computer using the RESET button.
* create a new program using the SAME LINE NUMBERS as a program already in

memory.
* change the batteries,

This brief introduction to programming on the computer should serve to illustrate the
exciting programming possibilities of your new computer.

'.Storing 'Programs i'n Memory '

You will notice that while the program is running, the BUSY indicator is lit at those times
that there is nothing on the display. RUN the program a few more times and try setting
N at several different values.

Programming the Computer

E
0 o
a:
0
en
E
0
s,
a.

101

Any one of the following characters can be used: A, S, 0, F, G, H, J, K, L, •, Z, X,
C, V, B, N, M, and SPC. Notice that these are the keys in the bottom two rows of the
alphabetic portion of the keyboard.

Note: To execute the program, instead of typing RUN 80 or GOTO 10, you need only
press the ~ key and then the letter used as a label. In the above example,
pressing ~ and then 'B' would cause 'SECOND' to appear on the
display.

When DEF is used to execute a program, variables and mode settings are affected in
the same way as when GOTO is used. See Chapter 8 for details.

Often you will want to store several different programs in the computer memory al one
time. (Remember that each must have unique line numbers.) Normally, to start a
program with a RUN or GOTO command, you need to remember the beginning line
number of each program (see Chapter 8). But, there is an easier way! You can label
each program with a letter and execute the program using only two keystrokes. This is
how to label a program and execute it using DEF:

Note: Put a label on the first line of each program that you want to reference.
The label consists of a single character in quotes, followed by a colon (:).

10: "A": PRINT "FIRST"
20: END
30: "B": PRINT "SECOND"
40: END

The DEF Key and Labeled Programs

This chapter discusses the additional feature which can eliminate unnecessary typing
the ~\key. (DEF is short for "DEFINE".)

The computer includes several features which make programming more convenient by
reducing the number of keystrokes required to enter repetitive material.

One such feature is in the availability of abbreviations for verbs and commands (see
Chapter 8).

' ' '

CHAPTERS . .
SHORT CUTS . :'

Short Cuts

102

AVER·

LJDDDDDDDDD
DDDDDDDD~I ~

Example:

One template is provided with the computer. You can use this template to help you
remember frequently used ~ key assignments.

For example, if you have one group of programs which you often use at the same time,
label the programs with letters and mark the template and set it over the two bottom
rows of the keyboard so that you can easily begin execution of any of the programs with
two keystrokes.

Template·

Short Cuts

103

If you are using the computer for manual calculations in BASIC mode, you may use the
CE-126P to simultaneously print the results of your calculations.

Using Printer

* 24-column thermal printer.

* Convenient paper feed and tear bar.

* Simultaneous printing of calculation results as desired (except in the CAL mode)

• Easy control of display or printer outputs in BASIC.

* Built-in cassette interface with remote function.

* Manual and programmed control of recorder for storing programs and data

* Dry battery operation for portability.

For connecting the computer to the CE-126P, refer to the instruction manual supplied
with the CE-126P.

The optional CE-126P Printer/Cassette Interface allows you to add a printer and to
connect a cassette recorder to your SHARP COMPUTER.
The CE-126P features:

Using the Options

104

You may print output on the printer from within BASIC programs by using the LPRINT
statement (see Chapter 8 for details). LPRINT can be used in the same form as the
PRINT statement. The difference is that if you PAINT something longer than 24
characters to the display, there is no way for you to see the extra characters. With the
LPRINT verb, the extra characters will be printed on a second, and possibly a third,
line as is required.

Programs which have been written with PRINT can be converted to work with the
printer by including a PRINT =LPRINT statement in the program (see Chapter 8 for
details). All PRINT statements following this statement will act as if they were LPRINT
statements. PRINT=PRINT will reset this condition to its normal state. This structure
may also be included in a program in an IF statement allowing a choice of output at the
time the program is used.

You may also list your programs on the printer with the LUST command (see Chapter 8
for details). If used without line numbers, LUST will list all program lines currently in
memory in their numerical order by line number. A line number range may also be
given with LUST to limit the lines which will be printed. When program lines are longer
than 24 characters, two or more lines may be used to print one program line. The
second and succeeding lines will be indented four or six characters so that the line
number will clearly identify each separate program line. (Line number, 1 to 999: four·
character indentation, over 999: six-character indentation)

Caution:
• In case an error (ERROR code 8) occurs due to a paper jam, remove the jam by

pulling the paper toward the paper cutter and tearing off the paper. Then press the
~ key to clear the error condition.

6.
"""'""""'"~~,...,..,...,..,...,..,~

300/50
Paper Input

300/50 I ENTER I

CAUTION:
The results obtained by the direct calculation feature in manual calculations cannot be
printed. Calculation results in the CAL mode also cannot be printed.

Printing is easily accomplished by pressing the I sH1FTI key and then the I ENTER I key
(P-NP) while in the RUN mode.
The printer indicator (a dash symbol) will appear just above the'"PRINT" label In the
lower right area of the display. After this, when you press the I ENTER I at the end of a
calculation, the contents of the display will be printed on one line and the results will be
printed on the next. For example:

Using the Options

105

If you intend to use a cassette tape recorder, the following are the minimum tape
recorder requirements for interfacing with the CE-126P:

_Cassette Tape Recorder

Connecting the CE-126P to a tape recorder

Only these three connections are necessary:

1. Red plug into the MICrophone jack on the cassette recorder.

2. Gray plug into the EARphone jack on the cassette recorder.

3. Black plug into the REMote jack on the cassette recorder.

Using this cassette interface will allow you to store programs and data from the
computer onto cassette tape. Once on tape, you can load these programs and
data back into the computer with a simple procedure.

Using Cassette Interface

• When the printer is exposed to strong external electrical noise, it may print numbers
at random. If this happens, depress the ~ key to stop the printing. Turn the CE-
126P power off and on, and then press the Im] key.
Pressing the Im] key will return the printer to its normal condition.

• When the printer causes a paper jam or is exposed to strong external electrical noise
while printing, it may not operate normally and only the symbol "BUSY" is
displayed. If this happens, depress the ~ key to stop printing. (Remove the
paper jam.) Turn the CE-126P power off and on, and then press the ~ key.

• When the CE-126P is not in use, turn off the printer switch to conserve the battery
life.

Using the Options

106

*In case the miniplug provided with the CE-126P is not compatible with the input/
output jacks of your tape recorder, special line conversion plugs commercially
available may be used.

Note: Some tape recorders may reject connection due to different specifications.
Those tape recorders having distortion, increased noise, and power deteriora
tion after long years of use may not show satisfactory results owing to change in
their electrical characteristics.

Item Requirements

1. Recorder Type Any tape recorder, standard cassette or mi-
crocassette recorder, may be used in accordance
with the requirements outlined below.

2. Input Jack The recorder should have a minijack input labeled
"MIC". Never use the "AUX" jack.

3. Input Impedance The input jack should be a low jmpedance input
(200-1,000 ohms).

4. Minimum Input level Below 3 mV or -50 dB

5. Output Jack Should be a minijack labeled "EXT.(EXTernal
speaker)", "MONITOR" "EAR (EARphone)"
or equivalent.

6. Output Impedance Should be below 1 O ohms.

7. Output Level Should be above 1 V (practical maximum output
above 100 mV).

8. Distortion Should be within 15% within a range of 2 kHz
through 4 kHz.

9. Wow and Flutter 0.3% maximum (WRMS)

10. Others Recorder motor speed should not fluctuate.

Using the Options

107

1. Recording (saving) onto magnetic tape

See Tape Notes.

(1) Turn off the REMOTE switch on the CE-126P.

(2) Enter a program or data into the computer.

(3) Load a tape into the tape recorder.
Determine the position on the tape where you want to record the program.
• When using a tape, be sure the tape moves past the clear leader (nonmagnet

ic mylar material).
• When using a tape already partially recorded, search for a location where no

recording exists.

(4) Connect the Interface's red plug to the tape recorder's MIC jack and the black
plug to the REM jack.

(5) Turn on the REMOTE switch.

(6) Simultaneously press the RECORD and PLAY buttons on the tape recorder (to
put it in RECORD mode).

(7) Input recording instructions (CSAVE statement, PRINT# statement), and
press the I ENTER I key for execution.

First set the computer in the "RUN" or "PRO" mode. Next operate the
following keys: w w m CY] [TI I SHIFT I C'.:.l file name I SHIFT I C'.:.l
I ENTER I.
(To write the contents of data memory onto tape, operate keys as follows: e.g.,
rn oo co oo rn 1SHIFT1 oo 1ENTER1 .

e.g., w m m rvi T ISHtFTI ~[A] [A] !SHIFT!~ IENTERI)

When you press the I ENTER] key, tape motion will begin, leaving about an 8-
second no-signal blank. (A long pip sounds for a while at the beginning.) After
that, the file name and its contents are recorded (with continuous short beep
sounds).

(8) When the recording is complete, the PROMPT symbol(>) will be displayed and
the tape recorder will automatically stop. Now you have your program on tape (it
still is in the computer also).
When data is to be automatically recorded by program execution (PRINT#
statement, not manual operation), set up steps (1) thru (6) before executing
the program.

To aid you in locating programs on tapes, use the tape counter on the recorder.

Using the Options

108

3. Loading from a magnetic tape

See Tape Notes.

To load, transfer, or read out programs and data from magnetic tape into the
computer, use the following procedure.

(1) Turn off the REMOTE switch.

(2) Load the tape in the tape recorder. Move the tape to a point just before the portion
to be read out.

During the verification, the mark "*" is shown at the rightmost digit of the
display. The "*" will disappear when the verification is completed. While a file
name is being retrieved, no "*" will be displayed as the verification has not
started yet.
(The same occurs when the first program is read without a file name.)

If the programs are verified as being identical, a PROMPT symbol (>) will be
displayed on the computer.

If the programs differ, execution will be interrupted and Error code 8 will be
displayed. If this occurs, try again.

Enter the following keys:-
The filename

~----which you used
previously.

w CIJ CQJ m w 1sH1FTI rn 1sH1n1 c:::J rn rn !SH•FTI C'.J leNreRl

The computer will automatically search for the specified file name and will compare
the contents on tape with the contents in memory.

(6) Input a CLOAD? statement and start execution with I ENTeRI key. Do this as
follows: Set the computer in the "RUN" or "PRO" mode.

2. Verifying the computer and tape contents

See Tape Notes.

After loading or transferring a program to or from tape, you can verify that the program
on tape and program in the computer are identical (and thus be sure that everything is
OK before continuing your programming or execution of programs).

(1) Turn off the REMOTE switch.

(2) With cassette in the recorder, operate the tape motion controls to position tape at
the point just before the appropriate file name to be checked.

(3) Connect the gray plug to the EARphone and the black plug to the REMote jacks.

(4) Turn on the REMOTE switch.

(5) Press the PLAY button of the recorder.

Using the Options

109

The specified file name will be automatically searched for and its contents will be
transferred into the computer.
The "*"appears while loading the designated CSAVEd program from the tape
to the computer's memory.
(The same occurs when the first program is read without a file name.)
The "*" disappears when the load is performed completely.

(7) When the program has been transferred, the computer will automatically stop the
tape motion and display the PROMPT (>) symbol.

To transfer data (INPUT# statement) in the course of a program, set up steps
(1) thru (5) prior to executing the program.

Notes:
• If an error occurs (error code "8" is displayed), start over from the begin

ning.
If the error continues, adjust volume slightly up or down.

• If the error code is not displayed but the tape motion continues (while the
computer is displaying the symbol "BUSY''), transfer is not being properly
executed.
Press i&l key ("break") to stop the tape. Repeat steps from the begin
ning.

• If the error remains or the tape continues to run after several attempts to correct
the problem, try cleaning and demagnetizing the recorder's tape head.

(3) Connect the gray plug to the EAR jack on the tape recorder, and the black plug to
the REM jack.
In using a tape recorder having no REM terminal, press the PAUSE button to
make a temporary stop.

(4) Turn on the REMOTE switch.

(5) Push the PLAY button on the tape recorder (to put unit in playback mode).

Set the VOLUME control to middle or maximum.
If the tape recorder does not function properly when the volume is set to
maximum, turn the volume down and try again.
Set Tone to maximum treble.

(6) Input transfer instructions (CLOAD statement, INPUT# statement), and press
I ENTER I key for execution.

Put the computer in the "RUN" mode. Then operate the following keys:
re CL_J [.QJ i Al [J'.JJ iSHIFTI C'.J tile name [SHIFT!~ [ENTER! .

(To load the contents of the data memory, operate keys as follows:
e.g., ~f-:': rx: r-,,--J ru:; TJ !sH1FTI w IENTERj .

e.g., 1.:1:..:1 i-L I ,~(jj ;-A_; ; ~; lsHIFTJ r=: I A_i ._A_~ [~till L."_] {_E,IHE!!J .)

Using the Options

110

(1) For any transfer or verification, use the tape recorder that was used for recording.
If another tape recorder is used, transfer or verification may not be possible.

(2) Always use only the highest quality tape for programs and data storage
(economy grade audio type tape may not provide the proper characteristics for
digital recordings).

(3) Keep the tape heads and other parts that contact tape clean. Use a cassette
cleaner tape for this purpose.

(4) Volume setting - Set to middle or maximum level
Volume level can be very important when reading in data from the recorder;
make slight adjustments as required to obtain error-free data transfer. A slight
adjustment either up or down may help produce perfect results every time.

(5) Be sure all connections between the computer and cassette interface are secure.
And be sure the connections between interface and recorder are secure and free
of foreign matter.

(6) If problems occur when using AC power for the CE-126P and/or the recorder, use
battery power instead (sometimes the AC power connection adds some "hum"
to the signal which may upset proper digital recording).

•To connect the AC adaptor to the CE-126P, turn the CE-126P power off and
then connect the adaptor to the CE-126P.

(7) Tone control - Set to maximum treble.

(8) When recording programs or data on used tape, erase some beginning portion of
the used type before writing and then execute the BASIC command for recording.
(Make sure that the previous program is completely erased without any portion
remaining.)

Tape Notes

Using the Options

111

Commands and verbs are arranged alphabetically within each category in the respec
tive sections. Each entry is on a separate page for easy reference. Functions are
grouped into three categories and arranged alphabetically within each category. The
contents of each section are listed on the following three pages so that you can quickly
identify the category to which an operator belongs.

This chapter is divided into three sections:

Commands: Instructions which are used outside a program to change the working
environment, perform utilities, or control programs

Verbs: Action words used in programs to construct BASIC statements
Functions: Special operators used in BASIC programs to change one variable to

another

CHAPTER'S
BASIC REFERENCE ·

BASIC Reference

112

* These commands are also BASIC verbs. Their effect as commands is identical to
their effect as verbs so they are not described in the Commands section. See the
Verbs section for more information.

Prof;!ram Control Variables Control
CONT CLEAR*
DELETE DIM*
GOTO* MEM*
NEW
REN UM Angle Mode Control
RUN DEGREE*

GRAD*
Cassette Control RADIAN*

CLO AD
CLO AD? Others
CSAVE BEEP*
INPUT#* MDF*
MERGE PASS
PRINT#* RANDOM*

USING*
Debugging WAIT*

UST
LUST
TROFF*
TRON*

Commands

BASIC Reference

BASIC Reference

Others
BEEP
DEGREE
GRAD
MDF
RADIAN
RANDOM
REM
TROFF
TRON

113

lnput and Output
AREAD
CSAVE
DATA
INPUT
INPUT#
LPRINT
PAUSE
PRINT
PRINT#
READ
RESTORE
USING
WAIT

Assignment and Declaration
CLEAR
Dlfv'i
LET

Control and Branching
CHAIN
END
FOR. .. TO ... STEP
GOSUB
GOTO
IF. . .THEN
NEXT
ON GOSUB
ON GOTO
RETURN
STOP

Numeric Functions
ABS
ACS
AHC
AHS
AHT
ASN
ATN
cos
CUR
DEG
OMS
EXP
FACT
HCS
HSN
HTN
INT
LN
LOG
POL
RCP
REC
RND
ROT
SGN
SIN
SOR
sou
TAN
TEN

114

String Functions
ASC
CHA$
LEFT$
LEN
MID$
RIGHT$
STR$
V.ll.L

Pseudovariables
INKEY$
MEM
Pl

Functions

BASIC Reference

115

• During the loading, an asterisk "*" is shown at the far right digit position of
display. The"*" will disappear when the loading is completed. While a file name
is being retrieved, no "*" will be displayed as the loading has not started yet.
(The same occurs when the first program is read without a file name.)

Notes: 1. If the designated file name cannot be retrieved before the tape reaches the
end, the computer will continue to search the file name. In this case, stop
the retrieval function by pressing the @@ key. This applies to MERGE,
CHAIN, CLOAD? and INPUT# commands to be described later.

2. If an error occurs during execution of CLOAD or CHAIN command
(described later), the program stored in the computer will be Invalid.

Loads the first program from the tape.
Searches the tape for the program named 'PR03' and loads
it.

CLO~D
CLO/,'.D "PR03"

Examples

*'hi
The first format of the CLOAD command clears existing programs in memory and loads
the first program stored on the tape, starting at the current position.

The second format of the CLOAD command clears the memory, searches the tape for
the program whose name is given by "filename", and loads the program

It the computer is in PROgram or RUN mode, program memory is loaded from the
tape.

wµm+Mi
The CLOAD command is used to load a program saved on cassette tape.

1 CLOAD
2 CLOAD "filename"

Abbreviations: CLO., CLOA.

See also: CLOAD?, CSAVE, MERGE, PASS

. . COMMANDS ·
• > I"' I ' I

Commt1nds
CLO AD

116

CLOAD? Compares the first program from the tape with the one in
memory.
Searches the tape for a program named 'PR03' and
compares it to the one stored in memory.

•An asterisk "*" will appear at the far right digit position of the display while the
program is being verified. The asterisk will disappear and the prompt will reappear
when verification is completed.

CLOAD? "PR03"

Examples

*1Mi
To verify that a program was saved correctly, rewind the cassette tape to the beginning
of the program and use the CLOAD? command.
The first format of the CLO AD? command compares the program stored in memory with
the first program stored on the tape, starting at the current position.

The second format of the CLO AD? command searches the tape for the program whose
name is given by "filename" and then compares it to the program stored in memory.

IQ!O.t.MM
The CLOAD? command is used to compare a program saved on cassette tape with one
stored in memory.

1 CLOAD?
2 CLOAD? "filename"

Abbreviations: CLO.?, CLOA.?

See also: CLOAD, CSAVE, MERGE, PASS

Commands
CLO AD?

117

CONT Continues an interrupted program execution.

''MM
When the STOP verb is used to halt a program during execution, the program can be
continued by entering CONT in response to the prompt.

When a program is halted using the ~ key, the program can be continued by
entering CONT in response to the prompt.

CONT also functions when the program is temporarily interrupted due to a command
such as PRINT.

1µm+MW
The CONT command is used to continue a program which has been temporarily
halted.

Abbreviations: C., CO., CON.

See also: RUN, STOP verb

1 CONT

Commands
CONT

118

Saves the programs now in memory onto the
tape under the name 'PR03', protected
with the password 'SECRET'.

CSAVE "PR03", "SECRET"

Examples

i•HM
The first format of the CSAVE command writes all of the programs in memory onto the
cassette tape without a specified file name.

The second format of the CSA VE command writes all of the programs in memory onto
the cassette tape and assigns the indicated file name.

The third format of the CSA VE command writes all of the programs in memory onto the
cassette tape without a specified file name and assigns the indicated password.
Programs saved with a password may be loaded by anyone, but only someone who
knows the password can list or modify the programs. (See discussion under PASS
command.)

The fourth format of the CSA VE command writes all of the programs in memory onto
the cassette tape and assigns them the indicated file name and password.

14111.t.BM
The CSAVE command is used to save a program to cassette tape.

1 CSAVE
2 CSAVE "filename"
3 CSAVE, "password"
4 CSAVE "filename", "password"

Abbreviations: CS., CSA., CSAV.

See also: CLOAD, CLOAD?, MERGE, PASS.

Commands
CSAVE

119

If only the starting line number is specified, that line number alone is deleted.

If the starting line number and comma(.) are specified, the starting line number and
all the subsequent line numbers are deleted.

If the comma (,) and ending line number are specified, all the lines from the beginning
of the program to the ending line number are deleted.

If both the starting and ending line numbers are omitted, an error occurs.

When the DELETE command is executed while a program file is qeing r~8:_d'.pa$e
the MERGE command, the DELETE command w6r1<$ dn·tf.t~ 1~r~1 ' .· i. ~.
The ~~LETE command is ignored w~~ any pas~o}dt~ Je . .j,, ~; f I 1~1' 1£0].Jtj t t .•

•' - r -=t~
DELETE 100, Deletes line 100 and all the subsequentline num·e.

11111
If both the starting and ending line numbers are specified, all the program lines between
the two numbers inclusive are deleted. If either of the two specified line numbers is not
found, an error occurs.

•A!iM¥11
The DELETE command is used to delete a program line or program lines. This
command is effective for manual operation in the PROgram mode.

1 DELETE [starting line number][,[ending line number]]

Abbreviations: DEL., DELE., DELET.

See also: NEW, PASS

Commands
DELETE

120

Begins program execution at line 100. GOTO 100

Examples

''Mi
The GOTO command can be used in place of the RUN command to start program
execution at the line number specified by the expression.

GOTO differs from RUN in five respects:

1) The value of the interval for WAIT is not reset
2) The display format established by USING statements is not cleared.
3) Variables and arrays are preserved.
4) PRINT =LPRINT status is not reset.
5) The pointer for READ is not reset.

Execution of a program with GOTO is identical to execution with the~ key.

1µ11M+1W
The GOTO command is used to start the execution of a program.

1 GOTO expression

Abbreviations: G., GO., GOT.

See also: RUN

Commands
GOTO

121

Displays line number 100. LIST 100

- --- --

Examples

••HM
The LIST command may only be used in the PROgram mode.

• With format 1, the program is displayed from its first line until the display is full.
* With format 2, the program is displayed from the line of the specified line number

until the display is full.
If the line for the specified number does not exist, the program will be displayed from
the line with the next largest number which does exist.

* With format 3, the program is displayed from the line written with the specified label
until the display is full.

* When programs are merged with the MERGE command, the UST command
functions for the last program.
However, if the label specified in format 3 does not exist i111,h~11i;i~tprograw, tt i~

s .•. earched. ~o.r in ~~qu~nce from the fif .• ~t program_. If_ th_·e. s_ ._p_ecf. -fi~il'" ·9. J_. ~. f,p· .. u d_,ifl_·_· .. 1 · ~ line containing u rs displayed. • '' ·· ·if··,..~ . . 1P I
If a password has been set, the Lll:?T command is ignore~ j . · . · I ~,1 # ; • :

' . ' . 1';1:4•. . h'ff'll ~ ·., ... - - ·; T "'f :"":-" ~~ . -· • -- :r
, i i-H. i-i f..:'~ ··f ,j\,. +

iµm+Mi
The LIST command is used to display a program.

1 LIST
2 LIST line number
3 LIST "label"

Abbreviations: L., LI., LIS.

See also: LUST

Commands
LIST

122

Lists the statements between line numbers 100 and 200. LUST 100,200

LUST "label",

If a password has been set, the LLIST command is ignored.

••MM
The LUST command may be used in the PROgram or RUN mode.

The first format prints all of the programs in memory.

The second format prints only the program line whose line number is given by the
expression.

The third format prints the statements from the line number with the nearest line equal
to or greater than the value of expression 1 to the nearest line equal to or greater than
the value of expression 2. There must be at least two lines between the two numbers.

The fourth format prints all program lines beginning with the line whose number is given
by the expression.

The fifth format prints all program lines up to, and including, the line whose number is
given by the expression.

• When programs are merged with the MERGE command, the LUST command
functions for the last program. To list a program stored earlier, execute:

The LUST command is used for printing a program on the optional printer.

1 LLIST
2 LLIST expression
3 LLIST expression 1 , expression 2
4 LUST expression,
5 LUST, expression

Abbreviations: LL., LU., LLIS.

See also: LIST

Commands
LLIST

l
'

123

Transfer the first program to the computer using the CLOAD command.

Program area o1 the computer
\

__., -+ Program "PR0-3"

Program "PR0-1"

Program "PA0-2" Program "PR0-2"

Program "PR0-1"

MERGE "PR0-2"
I ENTER)

Filename . jP~.ogram :

Program "PR0-1"

CLOAD "PR0-1"

I ENTER I

Program Filenkme
1

(Tape)

l§foj.jtj
When programs with file names PR0-1, PR0-2, and PR0-3 are to be stored, PR0-1
is stored using the CLOAD command, whereas PR0-2 and PR0-3 are transferred to
the computer using the MERGE ·command. The state of the storage is as follows.

''Mi
The MERGE command retains the program already stored in the COMPUTER and
then loads a program recorded on the tape. Therefore, several different programs can
be stored in the COMPUTER at the same time.

The MERGE command is used to load a program saved on cassette tape and merge it
with the program existing in memory.

1 MERGE
2 MERGE "filename"

(effective for the manual operation in the PROgram or RUN mode)

Abbreviations: MER., MERG.

See also: CLOAD

Commands MERGE

124

• If the first line number of the program loaded using the MERGE command is larger
than the last line number of the previously loaded program, the two programs are
considered to be a single program.

• If the first line number of the program loaded using the MERGE command is smaller
than the last line number of the previously loaded program, the two programs are
considered separate.
In the example above, where the line numbers for programs PR0-1, PR0-2, and
PR0-3 are 10 to 200, 50 to 150, and 160 to 300, respectively, PR0-1 and PR0-2
are considered separate. PR0-2 and PR0-3 are considered to be a single program
with line numbers 50 to 300.

* Loading programs with the MERGE command may resu It in two or more programs in
the computer with the same line numbers. In this case, the executed RUN or GOTO
(RUN expression, GOTO expression) is valid only for the last merged program.
There will be no way to execute the preceding program(s).
Therefore, put a label to the beginning of a program to be executed and execute the
program using a DEF (defined) key.
Note, however, that only the last merged program can be edited after the MERGE
command has been executed and that the program(s) loaded earlier cannot be
edited. Therefore, add the label to the program before merging the next program.

Merging password-protected programs
When loading programs with passwords (password-protected programs) using the
MERGE command, the handling of the programs differs as outlined below, depending
on whether the programs within the computer are protected.

When protected
Password-protected programs cannot be loaded.

When not protected
If password-protected programs are loaded using the MERGE command, a,11
programs within the computer become protected.

When the programs within the computer are protected, even programs without
passwords become password-protected when loaded using the MERGE command.

Programs loaded using the MERGE command are stored as in the example. The
programs are handled by their line numbers as follows.

Commands
MERGE

125

- ~ l , ..
'~ '

·~ .

! ··~

Executing merged programs
The figure shows the memory when PR0-1 is loaded after

"A" PR0-1 which PR0-2 and PR0-3 are loaded using the MERGE
- - - - - - - - - - - - - - command. If a program is started using RUN or GOTO

"B" PR0-2 (RUN expression or GOTO expression), PR0-3 will be
- - - - - - - - - - - - executed. On the other hand, if started using RUN

"C" PR0-3 "label", GOTO "label", or a DEF (defined) key, the
_ _ _ _ _ _ _ _ _ _ _ _ specified label is searched for from the beginning of PR0-3

within the computer.

If not found in PR0-3, the search proceeds in PR0-1. If also not found in PR0-1,
PR0-2 is searched. If the label is found, the program is executed from the labeled
line.
Note that since the label is searched for in this manner, if a label used in PR0-1 and
PR0-2 is also used in PR0-3, PR0-1 and PR0-2 cannot be executed.

Commands
MERGE

126

NEW Clears programs and data in memory.

Examples

''MM
When used in the PROgram mode, the NEW command clears all programs and data
(array variables, simple variables, and fixed variables) which are currently in mem
ory. (The programs with passwords cannot be cleared.)

The NEW command is not defined in the RUN mode and will result in an ERROR 9.

The NEW command is used to clear existing programs and data in memory.

See also: CLEAR, PASS

Abbreviations: none

1 NEW

Commands
NEW

127

Establishes the password 'SECRET' for all programs in
memory.

PASS "SECRET"

Examples

*'Mi
Passwords are used to protect programs from inspection or modification by other
users. A password consists of a character string no more than seven characters long.
The seven characters may be alphabetic or one of the following special symbols:

'#$%&()*+-/, :;<=>?@\.r-7T

Note: Do not use any BASIC command or verb as a password.

Once a PASS command has been given, the programs in memory are protected. A
password-protected program cannot be examined or modified in memory. It cannot be
sent to tape or listed with LIST or LUST, nor is it possible to add or delete program
lines. If several programs are in memory and PASS is entered, all programs in
memory are protected. The only way to remove this protection is to execute another
PASS command with the same password.

Note: When a password with more than seven characters is declared, only the first
seven characters are valid and are set or removed from pf.otection: ~· -~ ,
Press I ENTER I right after the password, ' r · ' '' .,,.+, ~-· ·r,•· 11 ·tN" '
Writing characters or symbols ~fter a password· results ii11 ~~ ·t. ·oor · ~d tei
password cannot be canceled. : . · · ·•· < 1 ·• •. : r :t l
(example) PASS"ABCDEFG":A=123 IENTERI-+ Error 1 l •;; t ·;.:

14111.tetiM
The PASS command is used to set and cancel passwords.

See also: CLOAD, CSAVE, DELETE, NEW, RENUM

1 PASS "character string"

Abbreviations: PA., PAS.

Commands
PASS

128

The REN UM command cannot be executed if the number of lines to be renumbered
exceeds 65279, or if the specification requires a change in the execution order of
program lines (for example, an attempt is made to execute RENUM 15, 30 when
three program lines 10, 20, and 30 exist).

It will take a little while to complete the execution of REN UM on a large program. lf you
press the ~ key to interrupt the program while one asterisk (*) is appearing at the
rightmost end of the display, the program will return to the original condition before the
execution of REN UM. However, this interruption by the ~ key will be ignored when
two asterisks (**) are on the display.

''Mi
This command renumbers old line numbers in the specified step increments, starting
from the specified new line number.

If the values of new line number and increment are omitted, rn is assumed for both. If
old line number is omitted, renumbering starts from the first line of the program. If the
specified old line number is not found, an error occurs.
Example 1 : RENUM
Renumbers all the program lines in increments of 10 steps from line 1 O.
Example 2: RENUM 100, 50, 10
Changes old line number 50 to new line number 100 and renumbers subsequent line
numbers in increments of 10 steps.

The RENUM command automatically changes all line number references following
GOTO, GOSUB, IF- THEN, ON-GOTO, ON-GOSUB, RESTORE, etc., to
reflect the new line numbers. In this case, however, an error will result if expression
(e.g., GOTO 2*50). If an error occurs due to such incorrect line number reference,
renumbering of the incorrect line number cannot be effected by RENUM. In such a
case, temporarily rewrite the command containing an incorrect line number to a REM
statement, and correct it (perhaps, change to ON-GOTO) after the execution of the
RENUM command.

iµm+Mi
The RENUM command is used to renumber program lines. This command is effective
for manual operation in the PRO (Program) mode.

1 RENUM [new line number][,[old line number][,incrernent]]

Abbreviations: REN., RENU.

Commands REN UM

129

' •· t·
I

The work area of "number of program lines x 4 bytes" is used only when the REN UM
command is executed. By renumbering program lines, line number references by
GOTO, GOSUB, etc., also change. As a result, the original program may have an
increase in the number of bytes used. In other words, new line GOTO 200 uses one
byte more than old line GOTO 20. The RENUM command cannot be executed if the
remaining capacity of the work area becomes short due to the increase in the number of
bytes used. In such a case, clear variables from memory by the CLEAR command and
you may be able to execute RENUM.

(See APPENDIX A for error messages related to REN UM.)

Commands REN UM

130

Executes the program which begins at line number 100. RUN 100

Examples

*'MM
The first format of the RUN command executes a program beginning with the lowest
numbered statement in memory.

The second format of the RUN command executes a program beginning with the
specified line number.

* When programs are merged with the MERGE command, the last merged program
will be executed with format 1 or "RUN expression" in format 2.

RUN differs from GOTO in five respects:
1) The value of the interval for WAIT is reset.
2) The display format established by USING statements is cleared.
3) Variables and arrays other than the fixed variables are cleared.
4) PRINT=PRINT status is set.
5) The pointer for READ is reset to the beginning DATA statement.

Execution of a program with GOTO is identical to execution with the DEF key. In all
three forms of program execution, FOR/NEXT and GOSUB nesting is cleared.

The RUN command is used to execute a program in memory.

1 RUN
2 RUN line number

Abbreviations: R., RU.

See also: GOTO, MERGE

Commands RUN

131

Entering "7 ~ X" will produce a display of "49".

Notes: 1. When the display indicates PROMPT (">"] at the start of program
execution, the designated variable is cleared.

10 "X": AREAD N
20 PRINT N "2
30 END

Examples

1411
When a program is labeled with a letter so that ii can be started using the [QEFJ key, the
AREAD verb can be used to enter a single starting value without the use of the INPUT
verb. The AREAD verb must appear on the first line of the program following the label.
If it appears elsewhere in the program, it will be ignored. Either a numeric or string
variable may be used, but only one can be used per program.

To use the AREAD verb, type the desired value in the RUN mode, press the !Q]fl key,
followed by the letter which identifies the program. If a string variable is being used, it is
not necessary to enclose the entered string in quotes.

The AREAD verb is used to read in a single value to a program which is started using
the !Q]fl key.

Abbreviations: A., AR., ARE., AREA.

See also: INPUT verb and discussion of the use of the DEF key in Chapter 6

1 AREAD variable name

' '

Verbs ..
' '

Verbs
AREAD

132

m rn-ABC
~ CIJ-DEFG

•When the display indicates PRINT Numeric expression, Numeric expression, or
PRINT "String", "String", the contents displayed last are stored.

•When the display indicates PRINT Numeric expression; Numeric expression;
Numeric expression ... , the contents displayed first (on the extreme left) are
stored.

•When the display indicates PRINT "String"; "String"; "String" ... , the
contents of the "String" designated last (on the extreme right) are stored.

DEFG

2. When the contents are displayed by PRINT verb at'the start of program
execution, the following is stored:

Example: When the program below is executed;
10 "A": PRINT "ABC", "DEFG"
20 "S": AREAD A$: PRINT A$
RUN mode

Verbs
AREAD

133

~· . !

Produces 3 beeps.
Produces 5 beeps.
Produces 4 beeps.
This is illegal and will produce an ERROR 9 message.
Produces no beeps, but does not produce an error message.

10 A=5 8$="9"
20 BEEP 3
30 BEEP A
40 BEEP(A+4)/2
50 BEEP 8$
60 BEEP -4

- -- -- - -----
Examples

''MW
The BEEP verb causes the COMPUTER to emit one or more audible tones at 4 kHz.
The number of beeps is determined by the expression, which must be numeric
(positive number less than 9.999999999E+99). The expression is evaluated, but
only the integer part is used to determine the number of beeps.

BEEP may also be used as a command using numeric literals and predefined
variables. In this case, beeps occur immediately after the I ENTER I key is pressed.

The BEEP verb is used to produce an audible tone.
•R!IM+1W

1 BEEP expression

Abbreviations: B., BE., BEE.

Verbs BEEP

134

20 CHAIN "PR0-2", 480

Loads the first program from the tape and begins
execution with the lowest line number.
Searches the tape for a program named PR0-2,
loads it, and begins execution with line number 480.

10 CHAIN

Examples

The second format of CHAIN loads the first program stored on the tape and begins
execution with the line number specified by the expression.

The third format of CHAIN searches the tape for the program whose name is indicated
by the filename, loads the program, and begins execution with the line number
indicated by the expression.

The fourth format of CHAIN will search the tape for the program whose name is
indicated by the filename, load the program, and begin execution with the line number
indicated by the expression.

The first format of CHAIN loads the first program stored on the tape and begins
execution with the lowest line number in the program. The effect is the same as having
entered CLOAD and RUN when in the RUN mode.

*1Mi
To use the CHAIN verb, one or more programs must be stored on a cassette. Then,
when the CHAIN verb is encountered in a running program, a program is loaded from
the cassette and executed.

•wm+MM
The CHAIN verb is used to start the execution of a program which has been stored on
cassette tape. It can only be used in connection with the optional CE-126P and CE-
152.

1 CHAIN
2 CHAIN expression
3 CHAIN "filename"
4 CHAIN "filename", expression

Abbreviations: CHA., CHAI.

See also: CLOAD, CSAVE, and RUN

Verbs
CHAIN

During execution, when the computer encounters the CHAIN statement, the next
section is called into memory and executed. In this manner, all of the sections are
eventually run.

Note: When a program containinqa CHAIN command is loaded from a tape by the
MERGE command, check to be sure that the CHAIN command is correct.

135

/) I File name File name
"PR0-2" "PR0-3"

I

'

File name
"PR0-3"

File name
"PR0-2"

'

T
File name
"PR0-2"

File name
"PR0-3"

'

(" f" indicates the position of the tape
recorder head.)

Magnetic tape

990: END

Execution

700: CHAIN "PR0-3", 710

"PR0-3"

710:

f
~ Execution

1
700: CHAIN

410: L

400: CHAIN "PR0-2", 410

"PR0-2"

10:
20:

Execution

400: CHAIN

"PR0-1"

For example, let's assume you have three program sections named PR0-1, PR0-2,
PR0-3. Each of these sections ends with a CHAIN statement.

Verbs
CHAIN

136

Frees the space assigned to C() and resets A to zero.
10 A=5: DIM C(5)
20 CLEAR

Examples

.,.
The CLEAR verb recovers space which is being used to store variables. This might be
done when the variables used in the first part of a program are not required in the second
part and availables space is limited. CLEAR may also be used at the beginning of a
program when several programs are resident in memory and you want to clear out the
space used by execution of prior programs.

CLEAR does not free the space used by the variable A-Z, A$-Z$, or A(1)-A(26)
(without DIM declaration) since they are permanently assigned (see Chapter 4).
CLEAR does reset numeric variables to zero and string variables to null.

IQ!H.J.#i
The CLEAR verb is used to erase all variables which have been used in the program
and to reset all preallocated variables to zero or null.

Abbreviations: CL., CLE., CLEA.

See also: DIM

1 CLEAR

Verbs
CLEAR

137

Loads the values from the DATA. statement into
8(). 8(1) will be 10, 8(2) will be 20, 8(3)
will be 30, etc.

Sets up an array. 10 DIM 8(10)
20WAIT128
30 FOR 1=1 TO 10
40 READ B{I)
50 PRINT 8(1)
60 NEXT I
70 DATA 10,20,30,40,50,60
80 DATA 70,80,90,100
90 END

Examples

l!J41
When assigning initial values to an array, it is convenient to list the values in a DATA
statement and use a READ statement in a FOR ... NEXT loop to load the values into
the array. When the first READ is executed, the first value in the first DATA statement is
returned. Succeeding READs use succeeding values in the sequential order in which
they appear in the program, regardless of how many values are listed in each DATA
statement or how many DATA statements are used.

DATA statements have no effect if encountered in the course of regular execution of the
program, so they can be inserted wherever it seems appropriate. Many programmers
like to include them immediately following the READ which uses them. If desired, the
values in a DATA statement can be read a second time by using the RESTORE
statement.

1µ11;.i-tiM
The DATA verb is used to provide values for use by the READ verb.

Abbreviations: DA., DAT.

See also: READ, RESTORE

1 DATA expression list
Where: expression list is: expression

or: expression, expression list

Verbs
DATA

138

X now has a value of 90, i.e., 90 degrees, the arc sine of t.
10 DEGREE
20 X=ASN 1
30 PRINT X

Examples

''MM
The COMPUTER has three forms for representing values in angular units-decimal
degrees, radians, and grads. These forms are used in specifying the arguments to the
SIN, COS, and TAN functions and in returning the results from the ASN, ACS, and
ATN functions.

The DEGREE function changes the unit of angle for all values to decimal degrees until a
GRAD or RADIAN verb is used. The OMS and DEG functions can be used to convert
values in decimal degrees into sexagesimal equivalent (degrees, minutes, seconds)
and vice versa.

IQ!IM·Mi
The DEGREE verb is used to specify the unit of angle to decimal degrees.

Abbreviations: DE., DEG., DEGR., DEGRE.

See also: GRAD and RADIAN

1 DEGREE

Verbs DEGREE

139

When a numeric array is dimensioned, all values are initially set to zero; in a string
array, the values are set to null.

For the array A and A$ DIM declaration, refer to the paragraph discussing variables.

In string arrays, one specifies the size of each string element in addition to the number
of elements. For example, DIM 8$(3)*12 reserves space for 4 strings which are each
a maximum of 12 characters long. It the length is not specified, each string can contain
a maximum of 16 characters.

11Mi
Except for arrays in the form: A(), A$(), and simple variable like A1 or 82$, a DIM
verb must be used to reserve space for any array variable.

The maximum number of dimensions in any array is two; the maximum size of any
one dimension is 255. In addition to the number of elements specified in the dimension
statement, one additional "zeroth" element is reserved. For example, DIM 8(3)
reserves B(O), 8(1), 8(2), and B(3). In two dimensional arrays there is an extra
"zeroth" row and column.

14111.t.MM
The DIM is used to reserve space for numeric and string array variables.

is: dimension spec.
or: dimension spec., dim list
is: numeric dim spec.
or: string dim spec.
is: numeric name (size)
is: string name (dims)
or: string name (dims)*len
is: valid numeric variable name
is: valid string variable name
is: size
or: size, size
is: number of elements
is: length of each string in a string array

and: size
and: len

Abbreviations: D., DI.

and: numeric name
and: string name
and: dims

and: numeric dim spec
and: string dim spec

and: dimension spec.

Verbs
DIM

1 DIM dim list
Where: dim list

140

Reserves space for a numeric array with 11 elements.
Reserves space for a two dimensional string array with

5 rows and 5 columns; each string will be a max
imum of 10 characters.

10 DIM B{1QJ)
20 DIM C$(4, 4)*100

Examples

The variable name once declared cannot be declared again. When a program once
executed is executed again with the GOTO command on using the mi key, the same
variable name as formerly declared will be declared again if the line with the DIM
command is executed. In this case, clear the array variable with the CLEAR command
and then declare it again.

Array variables can be cleared (or set undefined) with the CLEAR command. When
the program is started using the RUN command, array variables are automatically
cleared.

Verbs
DIM

141

With these programs in memory a 'RUN 10' prints
'HELLO', butnot'GOODBYE'. 'RUN30'
prints 'GOODBYE'.

10 PRINT "HELLO"
20 END
30 PRINT "GOODBYE"
40 END

Examples

''HI
When multiple programs are loaded into memory at the same time, a mark must be
included to indicate where each program ends so that execution does not continue from
one program to another. This is done by Including an END verb as the last statement in
the program.

IQ!ii.I.MM
The END verb is used to signal the end of a program.

Abbreviations: E., EN.

1 END

Verbs
END

142

11#1
The FOR and NEXT verbs are used in pairs to enclose a group of statements which are
to be repeated. The first time this group of statements is executed, the loop variable
(the variable named immediately following the FOR) has the value of expression 1.

When execution reaches the NEXT verb, the loop variable is increased by the step size
and then this value is tested against expression 2. If the value of the loop variable is
less than or equal to expression 2, the enclosed group of statements is executed
again, starting with the statement following the FOR. In the first form, the step size is
1 ; in the second form, the step size is given by expression 3. If the value of the loop
variable is greater than expression 2, execution continues with the statement which
immediately follows the NEXT. Because the comparison is made at the end, the
statements within a FOR/NEXT pair are always executed at least once.

Expression 1, expression 2, and expression 3 must be in the range of
-9.999999999E99 to 9.999999999E99. If the value of expression 3 is zero, FOR/
NEXT loop will be infinite.

The loop variable may be used within the group of statements, for example, as an
index to an array, but care should be taken in changing the value of the loop variable.

Programs should be written so that they never jump from outside a FOR/NEXT pair to a
statement within a FOR/NEXT pair. Similarly, programs must never leave a FOR/
NEXT pair by jumping out. Always exit a FOR/NEXT loop via the NEXT statement. To
do this, set the loop variable to a value higher than expression 2.

The group of statements enclosed by a FOR/NEXT pair can include another pair of
FOR/NEXT statements which use a different loop variable as long as the enclosed pair
is completely enclosed; i.e., if a FOR statement is included in the group, the
matching NEXT must also be included. FOR/NEXT pairs may be "nested" up to five
levels deep.

•MUM·MM
The FO_R verb is used in combination with the NEXT verb to repeat a series of
operations a specified number of times.

1 FOR numeric variable=expression 1 TO expression 2
2 FOR numeric variable=expression 1 TO expression 2

STEP expression 3

Abbreviations: F. and FO.; STE.

See also: NEXT

Verbs
FOR ••. TO

143

Note: The execution of the FOR-NEXT loop does to the end even it it jumps out of the
loop. Therefore, note that a nesting error of the FOR-NEXT loop (ERROR 5}
may result depending on the program (programs which execute the FOR
command a number of times).

This group of statements computes and prints
N factorial for the numbers from 1 to 10.

70 FOR N=1TO10
80 X=1
90 FOR F=1 TON
100 X=X*F
110 NEXT F
120 PRINT X
130 NEXT N

40 FOR N=10 TO 0 STEP -1 J This group of statements counts down 10, 9,
50 PRINT N 8, 7, 6, 5, 4, 3, 2, 1, 0.
60 NEXT N

This group of statements prints the numbers
1, 2, 3, 4, 5. J 10 FOR 1=1 TO 5

20 PRINT I
30 NEXT I

Examples

Verbs
FOR ... TO

144

When this program is run it prints the word 'HELLO' one
time.

10 GOSUB 100
20 END
100 PRINT "HELLO"
110 R~TURN

•¥f!,,1.u4

The group of statements is included in the program at some location where they are not
reached in the normal sequence of execution. A frequent location is after the END
statement which marks the end of the main program. At those locations in the main
body of the program-where subroutines are to be executed-include a GOSUB state
ment with an expression which indicates the starting line number of the subroutine.
The last line of the subroutine must be a RETURN. When GOSUB is executed, the
COMPUTER transfers control to the indicated line number and processes the state
ments until a RETURN is reached. Control is then transferred back to the statement
following the GOSUB.

A subroutine may include a GOSUB. Subroutines may be "nested" in this fashion up
to 10 levels deep.

The expression in a GOSUB statement may not include a comma, e.g., 'A(1, 2)'
cannot be used. Since there is an ON ... GOSUB structure tor choosing different
subroutines at given locations in the program, the expression usually consists of just
the desired line number. When a numeric expression is used, it must evaluate to a
valid line number, i.e., 1 to 65279, or an ERROR 4 will occur.

••MW
When you wish to execute the same group of statements several times in the course of
a program or use a previously written set of statements in several· programs, it is
convenient to use the BASIC capability for subroutines using the GOSUB and
RETURN verbs.

The GOSUB verb is used to execute a BASIC subroutine.

1 GOSUB expression

Abbreviations: GOS., GOSU.

See also: GOTO, ON .. GOSUB, ON ... GOTO, RETURN

Verbs
GOSUB

145

This program prints 'YES' if a 'Y' is
entered and prints 'NO' if anything else
is entered.

10 INPUT A$.
20 IF A$="Y" THEN GOTO 50
30 PRINT "NO"
40 GOTO 60
50 PRINT "YES"
60 END

Examples

The expression in a GOTO statement may not include a comma, e.g., 'A(1,2)'
cannot be used. Since there is an ON ... GOTO structure for choosing different
destinations at given locations in the program, the expression usually consists of just
the desired line number, i.e., 1 to 65279, or an ERROR 4 will occur.

Well designed programs usually flow simply from beginning to end, except for
subroutines executed during the program. Therefore, the principal use of the GOTO
verb is as a part of an IF. . .THEN statement.

11#1
The GOTO verb 1ransfers control from one location in a BASIC program to another
location. Unlike the GOSUB verb, GOTO does not "remember" the location from
which the transfer occurred.

1411;.t-t1M
The GOTO verb is used to transfer control 1o a specified line number.

1 GOTO expression

Abbreviations: G., GO., GOT.

See also: GOSUB, ON ... GOSUB, ON ... GOTO

Verbs
GOTO

146

10 INPUT "DEG=D, RAD=R, GRAD=G?" ;A$
20 IF A$="D" THEN 100
30 IF A$="R" THEN 200
40 GRAD :GOSUB 300:GOTO 40
100 DEGREE :GOSUB 300:GOTO 100
200 RADIAN :GOSUB 300:GOTO 200
300 INPUT "SIN ?";B
310 PRINT "SIN" ;B;"=";SIN B
320 RETURN

To solve for the values of a sine, in the respective angular units, first specify "D" for
degrees, "R" for radians, or "G" for grads and then enter the angle of the sine.

Examples

•1Mi
The COMPUTER has three forms for representing values in angular units-decimal
degrees, radians, and grads. These forms are used in specifying the arguments to the
SIN, COS, and TAN functions and in returning the results from the ASN, ACS, and
ATN functions.

The GRAD function changes the unit of angle for all values to grads until a DEGREE or
RADIAN verb is used. Grad represents an angular measurement in terms of percent
gradient, i.e., a 45° angle is a 509 gradient.

1µ11;.r+w
The GRAD verb is used to specify the unit of angle to grads.

Abbreviations: GR., GRA.

See also: DEGREE and RADIAN

1 GRAD

Verbs
GRAD

147

This program continues to ask 'CONTINUE?'
as long as 'YES' is entered; it stops if
'NO' is entered, and complains otherwise.

10 INPUT "CONTINUE?"; A$
20 IF A$="YES" THEN GOTO 10
30 IF A$="NO" THEN GOTO 60
40 PRINT "YES OR NO, PLEASE"
50 END

Examples

The statement which follows the THEN may be any BASIC statement, including
another IF ... THEN, If it is a LET statement, the LET verb itself must appear.

The two formats of the IF statement are identical in action, but the first format is clear.

*1#1
In the normal running of BASIC programs, statements are executed in the sequence in
which they occur. The IF ... THEN verb pair allows decisions to be made during
execution so that a given statement is executed only when desired. When the condition
part of the IF statement is true, the statement is executed; when it is false, the
statement is skipped.

The condition part of the IF statement can be any relational expression as described in
Chapter 4. It is also possible to use a numeric expression as a condition, although the
intent of the statement will be less clear. Any expression which evaluates to zero or a
negative number is considered false; any which evaluates to a positive number is
considered true.

•A!IM·Mi
The IF ... THEN verb pair is used to execute or not to execute a statement depending
on conditions at the time the program is run.

Abbreviations: none for IF; T, TH., THE.

1 IF condition THEN statement
2 JF condition statement

Verbs
IF ... THEN

148

If a prompt is included in the INPUT statement, the process is exactly the same except
that, instead of the question mark, the prompt string is displayed at the left edge of the
display. If the prompt string is followed by a semicolon, the cursor is positioned
immediately after the prompt. If the prompt is followed by a comma, the prompt is
displayed. Then when a key is pressed, the display is cleared and the first character of
the input is displayed at the left edge.

When a prompt is specified and there is more than one variable in the list following it,
the second and succeeding variables are prompted with the question mark. If a second
prompt is included in the list, it is displayed for the variable which immediately follows
it.
If the [ENTER] key is pressed and no input is provided, the variable retains the value it
had before the INPUT statement.

i!Mi
When you want to enter different values each time a program is run, use the INPUT
verb to enter these values from the keyboard.

In its simplest form the INPUT statement does not include a prompt string; instead a
question mark is displayed at the left edge of the display. A value is then entered,
followed by the I ENTER I key. This value is assigned to the first variable in the list. If other
variables are included in the same INPUT statement, this process is repeated until the
list is exhausted.

•A!iM·Bi
The INPUT verb is used to enter one or more values from the keyboard.

See also: INPUT#, READ, PRINT

Abbreviations: I., IN., INP., INPU.

var list and:

and: input group

1 INPUT input list
Where: input list is: input group

or: input group, input list
is: var list
or: prompt, var list
or: prompt, var list
is: variable
or: variable, var list
is: any string constant prompt and:

Verbs
INPUT

149

40 INPUT "X=?";X,"Y=?";Y

Clears the display and puts a question mark at the
left edge.

Displays 'A=' and waits for input data.
Displays 'A='.

When data is input, 'A=' disappears and
the data is displayed starting at the left edge.

Displays 'X= ?' and waits for first input.
After ri:Nrfili] is pressed, display is cleared
and 'Y=?' is displayed at the left edge.

Note: Clear the error during input for the INPUT command by pressing the ~ key
and then input the correct data.

20 INPUT "A=";A
30 INPUT "A=",A

10 INPUT A

Examples

Verbs
INPUT

150

This statement transfers the contents of the tape file "0-2" to variables D through Z
and to A(27) and beyond.

INPUT# A(10)* (without DIM declaration)

This statement transfers the data of the first file found after the tape was started, to
the variables A(10) and beyond (to J through Zand A(27) and beyond).

Notes: 1. If an array named A is already defined by the DIM statement, it is not
possible to define subscripted fixed variables in the form of A().

This statement transfers data from the cassette file named "DATA1" to the
variables A, B, X, and Y in that order.

To fill all the available fixed variables and, if defined, the extended variables
(A(27) and beyond) with data transferred from tape, specify the first variable with
an asterisk (*) subscripted to it.

INPUT # "D-2"; D*

The following variable types can be specified in the INPUT# statement:
(1) Fixed variables-A, B, C, A(7), D*, A(20)*, etc.
(2) Simple variables-AA, 83, CP$, etc. ·
(3) Array variables-S(*), HP(*), K${*), etc.

1) Transferring data to fixed variables
To transfer data from tape to fixed variables, specify the variable names in the
INPUT # statement.

INPUT# "DATA 1" ; A, B, X, Y

Use and Examples

IQ!ii.t.Mi
The INPUT# verb is used to enter values from the cassette tape.

Abbreviations: I. #, IN. #, INP. #, INPU. #

See also: INPUT, PRINT#, READ

1 INPUT # var list
2 INPUT # "filename"; var list

is: variable
or: variable, var list

Where: var list

Verbs
INPUT#

151

50 DIM 8(5)
60 INPUT# "DS-4"; B(*)

This statement transfers data from the tape file named "DS-4" to the variables (B(O)
through 8(5)) in array B.

Note: 1. Numeric data must be transferred to numeric array variables with the same
length as that of the data, character data must be transferred to character
array variables with the same length as that of the data. If this rule is not
observed, an error will result.

2. Locations tor array variables must be set aside in the program data area
before the INPUT# statement is executed. If not, an error will result. Use
the DIM statement to define the array in advance.

Notes: 1. Numeric data must be transferred to numeric simple variables, and
character data must be simple character variables. Cross-transfer is not
allowed.

2. Locations for simple variables must be set aside in the program data area
before the INPUT statement is executed. If not, an error will result. Use
assignment statements to reserve the locations for simple variables.

AA=0 I ENTER i Use appropriate numeric values or characters in
B1 $="A" I ENTER I assignment statements to reserve locations lor
INPUT AA, B 1 $ I ENTER I variables.

3) Data transfer to array variables
To transfer data from a tape file to array variables, specify the array name in the
INPUT# statement in the form of array name(*).

This statement transfers data from the tape file named "DM-1" to simple variables
AB, Y1, and XY$.

2. Data transfer to fixed variables and extended variables (A(27) and

beyond) will continue until the end of the source data file on the tape is

reached, but if the computer's memory becomes full, an error (ERROR

6) results.

2) Data transfer to simple variables
Data in a tape file can be transferred to simple variables by specifying the desired
simple variable names in the INPUT # statement.

INPUT # "DM-1 "; AB, Y1, XY$

Verbs
INPUT#

152

-CAUTION-
If the number of variables specified in the INPUT statement does not agree with the
amount of data recorded on the tape, the following will happen:

* If the number of pieces of data recorded on the tape file (to be transferred) is
greater than the number of specified variables, data transfer will be performed to
the last variable, and the remaining data will be ignored.

* If the number of pieces of data recorded in the tape file (to be transferred) is smaller
than the number of specified variables, all the file data will be transferred to the
variables to the end of the file, and the remaining variables will maintain their
previous contents. In this case, however, the computer will continue to wait for
data transfer from the tape. To halt this state, you should operate the ~ key.

• If the INPUT statement is executed with no variable name specified in it, an error
(ERROR 1) will result.

Verbs
INPUT#

153

Assigns the value '10' to I.
Assigns the value '50' to A.
Assigns the value '50' to X$
Assigns the value '50.00' to Y$.

101=10
20 A=5*1
30 X$=STR$(A)
40 IF 1>=10 THEN LET Y$=X$+".00"

The LET verb may be omitted in all LET statements except those which appear in the
THEN clause of an IF ... THEN statement. In this one case the LET verb must be
used.

••Mi
The LET verb assigns the value of the expression to the designated variable. The type
of the expression must match that of the variable, i.e., only numeric expressions can
be assigned to numeric variables and only string expressions can be assigned to string
variables. To convert from one type to the other, one of the explicit type conversion
functions, STR$ or VAL, must be used.

IQ!iM¥11
The LET verb is used to assign a value to a variable.

Abbreviations: LE.

1 LET variable=expression
2 varlable=expresslon

Verbs
LET

154

10 A=10:8=20:X$="ABCDE":Y$="XYZ"
20 LPRINT A
30 LPRINT X$
40 LPRINT A,B
50 LPRINT X$;A;B
60 LPRlNT

Examples

A numeric value within the 12-column (digit) ranqe is printed at the far right of the
display, while a character value (string value) is printed starting at the far left. If the
value to be printed exceeds 12 columns, the numeric value is printed with the least
significant digit(s) of its decimal fraction part truncated so the value is within 12 digits,
and the characters value is printed from the first 12 characters (from the left).

In format 3, the values are printed from the left edge of the paper. If the value to be
printed exceeds 24 columns, a new line is automatically performed. Up to a maximum
of 96 characters can be printed.

Note: Do not use any BASIC command or verb as a string expression.

In format 2, the 24 columns of one line are divided into two groups of 12 columns, and
data is printed symmetrically around the comma.

••vu
In format 1, numerics are right justified and alphabetics are printed from the left side of
the paper. A line feed command is automatically executed when one line contains
more than 24 characters.

IQ!!M·#i
The LPRINT verb is used to print information on the printer CE-126P.

1 LPRINTtexpression . }
character stnng

2 LPRINT expression j {expression l
character string character string

3 LPRINT{expression {expression ; ... ; {expression }
character string character string character string

Abbreviations: LP., LPR., LPRI., LPRIN.

See also: PRINT, USING

For printer CE·126P

Verbs
LPRINT

155

0.556 5.55555E-01

0.556 RUN I ENTER!

10 USING "###.###"
20 A=MDF (5/9)
30 PRINT A
40 USING
50 PRINT A, 5/9
60 END

0.056
USING "###.###"
MDF (0.5/9)

Display

''Mi
The MDF is a function used to round the value of an expression to the number of
decimal places specified by the USING command.

This verb is effective only when the number of decimal places is specified for a value by
the USING command.

•A!IM·#i
The MDF verb is used to round up the value of an expression.

1 MDF expression

Abbreviation: MD.

See also: USING

Verbs
MDF

156

Print the numbers from 1 to 1 O each time the I ENTER I is
pressed.

10 FOR 1=1 TO 10
20 PRINT I
30 NEXT I

Examples

''Ml
The use of the NEXT verb is described under FOR. The numeric variable in a NEXT
statement must match the numeric variable in the corresponding FOR.

1µm.t.#j
The NEXT verb is used to mark the end of a group of statements which are being
repeated in a FOR/NEXT loop.

Abbreviations: N., NE., NEX.

See also: FOR

1 NEXT numeric variable

Verbs NEXT

157

An input of 1 prints "FIRST"; 2prints
"SECOND";3 prints "THIRD".
Any other input does not produce any
print.

10 INPUT A
20 ON A GOSUB 100, 200, 300
30 END
100 PRINT "FIRST"
110 RETURN
200 PRINT "SECOND"
210 RETURN
300 PRINT "THIRD"
310 RETURN

Examples

*'Ml
When the ON ... GOSUB verb is executed, the expression between ON and GOSUB
is evaluated and reduced to an integer. If the value of the integer is 1, the first
subroutine in the list is executed as in a normal GOSUB. If the expression is 2, the
second subroutine in the list is executed, and so forth. After the RETURN from the
subroutine, execution proceeds with the statement which follows the ON ... GOSUB.

If the expression is zero, negative, or larger than the number of subroutines provided
in the list, no subroutine is executed and execution proceeds with the next line of the
program.

NOTE: Commas cannot be used in the expressions following the GOSUB. The
COMPUTER cannot distinguish between commas in expressions and com
mas between expressions.

The ON ... GOSUB verb is used to execute one of a set of subroutines depending on
the value of a control expression.

Abbreviations: O.; GOS., GOSU.

See also: GOSUB, GOTO, ON ... GOTO

1 ON expression GOSUB expression list
Where: expression list is: expression

or: expression, expression ~ist

Verbs
ON ... GOSUB

158

An input of 1 prints 'FIRST'; 2prints
'SECOND'; 3 prints 'THI RD'. Any
other input does not produce any print.

10 INPUT A
20 ON A GOTO 100, 200, 300
30 GOTO 900
100 PRINT "FIRST"
110 GOTO 900
200 PRINT "SECOND"
210 GOTO 900
300 PRINT "THIRD"
310 GOTO 900
900 END

Examples

''Mi
When the ON ... GOTO verb is executed, the expression between ON and GOTO is
evaluated and reduced to an integer. If the value of the integer is 1, control is
transferred to the first location in the list. If the expression is 2, control is transferred to
the second location in the list, and so forth.

If the expression is zero, negative, or larger than the number of locations provided in
the list, execution proceeds with the next line of the program.

NOTE: Commas cannot be used in the expressions following the GOTO. The
COMPUTER cannot distinguish between commas in expressions and com
mas between expressions.

1µm.1+11
The ON ... GOTO verb is used to transfer control to one of a set of locations depending
on the value of a control expression.

Abbreviations: 0.: G., GO., GOT.

See also: GOSUB, GOTO, ON ... GOSUB

1 ON expression GOTO expression list
Where: expression list is: expression

or: expression, expression list

Verbs
ON ... GOTO

159

• The number of the values (items) specified in format 2 must be within 2.
• It the specified value exceeds 12 columns. the following is performed.
1) When the numeric value exceeds 12 digits, the least significant digit(s) is

truncated.
2) When the characters exceed 12 columns, only the first 12 characters (from the

left) are displayed.

*1Mi
The PAUSE verb is used to display prompting information, results of calculations, etc.
The operation of PAUSE is identical to PRINT except that after PAUSE the COM
PUTER waits for a short preset interval of about 0.85 second and then continues
execution of the program without waiting for the I ENTER I key or the WAIT interval.

The first form of the PAUSE statement displays a single value. If the expression is
numeric, the value is printed at the far right of the display. If it is a string expression,
the display is made starting at the far left.

In format 2, the display unit is divided into groups of 12 columns. The values are
displayed, in sequence, from the first specified value.

Jn this case too, within a range of 12 columns, the numeric value of an expression is
displayed from the right end of the display and characters are displayed from the left
side.

IQ!li.t.Hi
The PAUSE verb is used to print information on the display for a short period.

PAUSE print expr
2 PAUSE print expr, print expr
3 PAUSE print expr; print list; ... ; print list

Where: print list is: print expr
or: print expr; print list

and: print expr is: expression
or: USING clause; expression

The USING clause is described separately under USING.

Abbreviations: PAU., PAUS.

See also: LPRINT, PRINT, USING, WAIT

Verbs
PAUSE

160

Note: Do not use any BASIC command or verb as a character string in a PAUSE
statement.

10 A=10: 8=20: X$="ABCDEF":
Y$="XYZ"

Display

20 PAUSE A 10.1

I ABCOEF 30 PAUSE X$

I ABCDEF 40 PAUSE X$,B 20. I

I XYZABCDEF 50 PAUSE Y$;X$

60 PAUSE A*B 200.

Examples

In format 3, the specified value is displayed continuously from the left side of the
display.

Verbs
PAUSE

161

*1Mi
The PRINT verb is used to display prompting information, results of calculations, etc.
The first form of the PRINT statement displays a single value. If the expression is
numeric, the value is printed at the far right of the display. If it is a string expression,
the display is made starting at the far left.

In format 2, the display unit is divided into groups of 12 columns. The values are
displayed, in sequence, from the first specified value. In this case too, within a range
of 12 columns, the value of an expression is displayed from the right end of the display
and characters are displayed from the left side.

• The number of the values (items) specified in format 2 must be within 2.
• If the specified value exceeds 12 columns, the following is performed.
1) When the numeric value exceeds 12 digits, the least significant digit(s) is

truncated.
2) When the characters exceed 12 columns, only the first 12 characters (from the

left) are displayed.

The PRINT verb is used to print information on the display or on the printer.

Where: print list is: print exp
or: print expr; print list

and: print expr is: expression
or: USING clause; expression

The USING clause is described separately under USING.

Abbreviations: P., PR., PAI., PAIN.

See also: LPRINT, USING, WAIT

1 PRINT print expr
2 PRINT print expr, print expr
3 PRINT print list
4 PRINT= LPRINT
5 PRINT= PRINT

Verbs
PRINT

162

VWXYZ456. 50 PRINT Y$;B

ABCDEF123. 40 PRINT X$;A

123.456. 30 PRINT A;B

456. I ABCDEF

10 A=123:B=456:X$="ABCDEF":
Y$="VWXYZ"

20 PRINT X$,B

Examples

Note: Do not use any BASIC command or verb as a character string in a PRINT
statement.

In format 3, the specified value is displayed continuously from the left side of the
display.

Verbs
PRINT

163

PRINT E,X$,A(30)*

PRINT# "D-2"; D* This statement saves the contents of fixed variables D
through Z (and of extended variables A(27) and
beyond, if defined) into the tape file named "D-2".
This statement saves the contents of the fixed variables
E and X$ and of the extended variables A(30) and all the
remaining variables, onto the tape without file name.

Note: Subscripted fixed variable names A(1) through A(26) can be specified in the
PRINT# statement in much the same way as A through Z (or A$ through Z$).
However -. if array A is already defined by the DIM statement, A() cannot be
used to define subscripted fixed variables.

This statement saves contents of variables A, B, X, and Y into tape file named
"DATA 1".
If you wish to save the contents of the specified fixed variable and all the subsequent
fixed variables, subscript that variable name with an asterisk=,

PRINT# "DATA 1"; A, B, X, Y

The following variable types can be used for variable names:
(1) Fixed variables-A, B, X, A(26), C*. A(10)*, etc.
(2) Simple variables-AA, 82, XY$, etc.
(3) Array variables-B(*), CD(*), NS(*). etc.

1} Saving fixed variable contents onto tape
The contents of fixed variables can be saved onto tape by specifying the desired
variable names (separated by commas) in the PRINT# statement.

Use and Examples

IQ!IM{11
The PRINT # verb is used to store values on the cassette tape.

Abbreviations: P. #, PR. #, PRI. #,PRIN. #

See also: INPUT #, PRINT, READ

1 PRINT # "var list"
2 PRINT # "filename" ; var list

Where: var list is: variable
or: variable, var list

Verbs
PRINT#

164

Note: It is not possible to save the contents of only one specific element of an array.
While fixed variables or subscripted fixed variables in the form of A() allow you
to save only one specific element of such a variable, an array (such as A),
defined by the DIM statement, allows you to save in the same manner as other
arrays.

• If the PRINT # statement is executed with no variable names specified, an error
{ERROR 1) will result.

-CAUTION-
The locations for extended variables such as A(27) and beyond, simple variables,
and/or array variables must be set aside in the program/data area before the PRINT#
statement is executed. Otherwise, the execution of the PRINT # statement for
undefined variables will result in an error.

PRINT# "DS-2";X(*).YS(*)
This statement saves the contents of all the elements
(X(O),X(1), ...) of the array X, and of all the elements
(X$(0), Y$(1), ...) of the array Y$, into the tape file name
'DS-2'.

PRINT # "DM-1 ";AB, Y1, XY$
This statement saves the contents of the simple variables AB,
Y1, and XY$ into the tape file named 'DM-1 '.

3) Saving array variable contents
The contents of all variables of a specific array can be saved onto tape by specifying
the array name subscripted by an asterisk enclosed in parentheses (*).

2) Saving simple variable (two-character variable) contents
The contents of simple variables can be saved onto tape by specifying the desired
variable names.

Verbs
PRINT#

165

X now has a value of 1.570796327 or Pl/2, the arc sine of 1.
10 RADIAN
20 X=ASN 1
30 PRINT X

••Mi
The COMPUTER has three forms for representing values in angular values-decimal
degrees, radians, and grads. These forms are used in specifying the arguments to the
SIN, COS, and TAN functions and in returning the results from the ASN, ACS, and
ATN functions.

The RADIAN function changes the unit of angle for all values to radians until a DEGREE
or GRAD verb is used. Radian represents an angular measurement in terms of the
length of the arc with respect to a radius, i.e., 360° is 2 Pl radians since the
circumference of a circle is 2 P! times the radius.

IA!ii.J.Mi
The RADIAN verb is used to change the unit of angle to radians.

1 RADIAN

Abbreviations: RAD., RADI., RADIA.

See also: DEGREE, GRAD

Verbs
RADIAN

166

When run from line 20, the value of X is based on the standard
seed. When run from line 10, a new seed is used.

10 RANDOM
20 X=RND 10

Examples

•1Mi
When random numbers are generated using the RND function, the COMPUTER
begins with a predetermined "seed" or starting number. The RANDOM verb resets
this seed to a new randomly determined value.

The starting seed will be the same each time the COMPUTER is turned on, so the
sequence of random numbers generated with RND is the same each time, unless the
seed is changed. This is very convenient during the development of a program
because it means that the behavior of the program should be the same each time it is
run, even though it includes an RND function. When you want to have the numbers be
truly random, the RANDOM statement can be used to make the seed itself random.

•M•H.t.Mi
The RANDOM verb is used to reset the seed for random number generation.

1 RANDOM

Abbreviations: RA., RAN., RAND., RANDO.

Verbs
RANDOM

167

Loads the values from the DATA statement into B()-
8(1) is 10, 8(2) is 20, 8(3) is 30, etc.

Set up an array. 10 DIM 8 {10)
20 WAIT32
30 FOR 1=1 TO 10
40 READ 8(1)
50 PRINT 8(1}*2
60 NEXT I
70 DATA 10 20 30 40 50 60
80 DATA 70 80 90 100
90 END

Examph~s

•au
When assigning initial values to an array, it is convenient to list the values in a DATA
statement and use a READ statement in a FOR ... NEXT loop to load the values into
the array. When the first READ is executed. the first value in the first DAT A statement is
returned. Succeeding READs use succeeding values in the sequential order in which
they appear in the program, regardless of how many values are listed in each DATA
statement or how many DAT A statements are used.

If desired, the values in a DATA statement can be read a second time by using the
RESTORE statement.

1µm+Mi
The READ verb is used to read values from a DATA statement and assign them to
variables.

See also: DATA, RESTORE

Abbreviations: REA.

1 READ variable list
Where: variable list is: variable

or: variable , variable list

Verbs
READ

168

10 REM THIS LINE HAS NO EFFECT

1#$Mj.]tj

•1Hi
Often it is useful to include explanatory comments in a program. These can provide
titles, names of authors, dates of last modification, usage notes, reminders about
algorithms used, etc. These comments are included by means of the REM statement.

The REM statement has no effect on the program execution and can be included
anywhere in the program. Everything following the REM verb in that line is treated as a
comment.

140;.t·Mi
The REM verb is used to include comments in a program.

Abbreviations: none

1 REM remark

Verbs REM

169

Assign the value 20 to each of the elements of B().

Sets up an array. 10 DIM 8(10)
20 WAIT 32
30 FOR 1=1TO111l
40 RESTORE
50 READ B(I)
60 PRINT 8(1)*1
70 NEXT I
80 DATA 20
90 END

::Examples._

•1Hi
In the regular use of the READ verb, the COMPUTER begins reading with the first value
in a DAT A statement and proceeds sequentially through the remaining values. The first
form of the RESTORE statement resets the pointer to the first value of the first DATA
statement, so that it can be read again. The second form of the RESTORE statement
resets the pointer to the first value of the first DAT A statement whose line number is
greater than the value of the expression.

IQ!IM·Mi
The RESTORE verb is used to reread values in a DAT A statement or to change the
order in which these values are read.

1 RESTORE
2 RESTORE expression

Abbreviations: RES., REST., RESTO., RESTOR.

See also: DATA, READ

Verbs
RESTORE

170

When run, this program prints the word "HELLO" one
time.

10 GOSUB 100
20 END
100 PRINT "HELLO"
110 RETURN

Examples

EHi
A subroutine may have more than one RETURN statement, but the first one executed
terminates the execution of the subroutine. The next statement executed will be the
one following the GOSUB or ON ... GOSUB which calls the subroutine. If a RETURN
is executed without a GOSUB, an ERROR 5 will occur.

1µm+Mi
The RETURN verb is used at the end of a subroutine to return control to the statement
following the originating GOSUB.

1 RETURN

Abbreviations: RE., RET., RETU., RETUR.

See also: GOSUB, ON ... GOSUB

Verbs RETURN

171

Causes "BREAK IN 1Ql" to appear in the display. 10 STOP
•#U.MM

••Mi
When the STOP verb is encountered in program execution, the COMPUTER execu
tion halts and a message is displayed such as 'BREAK IN 200' where 200 is the
number of the line containing the STOP. STOP is used during the development of a
program to check the flow of the program or examine the state of variables. Execution
may be restarted using the CONT command.

The STOP verb is used to halt execution of a program for diagnostic purposes.

Abbreviations: S., ST., STO.

See also: END, CONT

1 STOP

Verbs
STOP

172

When run, this program displays the line numbers 10,
20, 30, 30, 30, and 40 as the rn is pressed.

10 TRON
20 FOR 1=1 TO 3
30 NEXT I
40 TROFF

Examples

••Mi
Execution of the TROFF verb restores normal execution of the program.

•MUM+N
The TROFF verb is used to cancel the trace mode.

See also: TRON

Abbreviations: TROF.

1 TROFF

Verbs
TROFF

173

When run, this program displays the line numbers 10,
20, 30, 30, 30, and 40 as the [TI is pressed.

10 TRON
20 FOR 1=1 TO 3
30 NEXT I
40 TROFF

Example~

''Mi
The trace mode provides assistance in debugging programs. When the trace mode Is
on, line number of each statement is displayed after each statement is executed. The
COMPUTER then halts and waits for the Down Arrow key to be pressed before moving
on to the next statement. The Up Arrow key may be pressed to see the statement which
has just been executed. The trace mode continues until a TROFF verb is executed or

c•
the key operation of the ; sH1r!J and § is performed.

IQ!IM+11
The TRON verb is used to initiate the trace mode.

Abbreviations: TR., TRO.

See also: TROFF

1 TRON

Verbs
TRON

174

(See APPENDIX C for further guide to the use of USING.)

10 A=125:X$="ABCDEF"

20 PRINT USING "##.##"";A 1.2SE021

30 PRINT USING "&&&&&&&&";X$._I -'-A_B_C_D_E_F __,

40 PRINT USING "####&&&";A;X$1 L_ _1_2_s_A_B_c __,

Examples

*1Mi
The USING verb can be used by itself or as a clause within an LPRlNT, PAUSE, or
PRINT statement. The USING verb establishes a specified format for output which is
used for all output which follows until changed by another USING verb.

The editing specification of the USING verb consists of a quoted string composed of
some combination of the following editing characters:

Right justified numeric field character
Decimal point

" Used to indicate that numbers should be displayed in scientific notation
& Left justified alphanumeric field

For example, "####" is an editing speclllcatlon for a right justified numeric field with
room for 3 digits and the sign. In numeric fields, a location must be included for the
sign, even if it will always be positive.

Editing specifications may include more than one field. For example"####&&&&"
could be used to print a numeric and a character field next to each other.

If the editing specification is missing, as in format 1, special formatting is turned off and
the built-in display rules pertain.

1µm+Hi
The USING verb is used to control the format of displayed or printed output.

1 USING
2 USING "editing specification"

Abbreviations: U., US., USI., USIN.

See also: LPRINT, PAUSE, PRINT

Verbs
USING

175

Causes PRINT to wait about 1 second. 10 WAIT 59

i#ffoj.]tj

*1Mi
In normal execution, the COMPUTER halts execution after a PRINT command until
the I ENTER I key is pressed. The WAIT command causes the COMPUTER to display for
a specified interval and then proceed automatically (similar to the PAUSE verb). The
expression which follows the WAIT verb determines the length of the interval. The
interval may be set to any value from 0 to 65535. Each increment is about one fifty-ninth
of a second. WAIT 0 is too fast to be read reasonably; WAIT 65535 is about 19
minutes. WAIT with no following expression resets the COMPUTER to the original
condition of waiting until the I ENTER I key is pressed.

IQ!li.I.Mi
The WAIT verb is used to control the length of time that displayed information is shown
before program execution continues.

Abbreviations: W., WA., WAI.

See also: PRINT

1 WAIT expression
2WAIT

Verbs
WAIT

176

The W key may be read when the program is started by pressing the IQgfJ W
keys.

Lines 40 and beyond contain tests for the key and the actions to be taken (for example:
40 PRINT A$). On first executing the program, the value of INKEY$ is null, since the
last key pressed was I ENTER I.

• If an INKEY$ command is written at the beginning of the program, the start key may
be read (by the INKEY$ command) when the program is started. For example, in
the following program

10"Z": Z$=lNKEY$

INKEY$ is a string pseudovariable which has the value of the last key pressed on the
keyboard. lENTERJ' ~ ' (SHtFTI '~ '~ .cn .rr; 'CB 'BJ '~'

~ , and scientific function keys all have a value of null. IN KEY$ is used to respond
to the pressing of individual keys without waiting for the ENTER key to end the input.

5 WAIT 50
10 A$=1NKEY$
20 B=ASC A$
30 IF 8=0 THEN GOTO 10
40 IF B ...

1 INKEY$

Pseudovariables are a group of functions which take no argument and are used like
simple variables wherever required.

Pseudovariables

FUNCTIONS

Functions
Pseudovarlables

177

The program size (in bytes) can be obtained by the following operation.

Example:
RUN mode

CLEAR I ENTER I (Clears the simple variables, array variables, etc.)
6878-MEM I ENTER I+-- displays the number of bytes in the program

Reference

[
7 T /" T.. T T r .T .T.77.T.4

Program
.LL.L.L.111.11.LJ.ff

i , 1 The size of this area in bytes is

J
. , obtained with the MEM command.

I TTTT.TTTTTTI,.
rArray variables, simple),

Ir variables • ~
i.1'" L .LI .L L.L.L.L..L~f1

Program/
data area

*'Mi
Obtains the number of free bytes (area not used by a program, array variables, or
simple variables) in the program/data area.

1µm+Mi
To obtain the number of free bytes in the program/data area.

1 MEM
Abbreviations: M., ME.

Functions
Pseudovariables

178

Pl is a numeric pseudovariable which has the value of Pl. It is identical to the use of the
special Pl character (?r) on the keyboard. Like other numbers, the value of Pl is kept
to 10-digit accuracy (3.141592654).

1 Pl

Functions
Pseudovariables

179

AHT is a numeric function which returns arc-hyperbolic tangent of the numeric
argument.

1 AHT numeric expression

AHS is a numeric function which returns arc-hyperbolic sine of the numeric argument.
AHS 6 is 2.491779853.

1 AHS numeric expression

AHC is a numeric function which returns arc-hyperbolic cosine of the numeric argu
ment. AHC 5 is 2.29243167.

1 AHC numeric expression

ACS is a numeric function which returns the arc cosine of the numeric argument. The
arc cosine is the angle whose cosine ts equal to the expression. The value returned
depends on whether the COMPUTER is in decimal degree, radian, or grad mode for
angles. ACS.5 is 60 in the decimal degree mode.

1 ACS numeric expression

ABS is a numeric function which returns the absolute value of the numeric argument.
The absolute value is the value of a number without regard to its sign. ABS - 1 o is 1 O.

1 ABS numeric expression

Numeric functions are a group of mathematical operations which take a single numeric
value and return a numeric value. They include trigonometric functions, logarithmic
functions, and functions which operate on the integer and sign parts of a number.
Many dialects of BASIC require that the argument to a function be enclosed in
parentheses. The COMPUTER does not require these parentheses, except when it is
necessary to indicate what part of a more complex expression is to be included in the
argument.

LOG 100+100 will be interpreted as:
(LOG 100)+100 not LOG (100+100)

Numeric Functions

Functions
Numeric Functions

180

OMS is a numeric function which converts an angle argument in DEG format to OMS
format (see DEG). OMS 55.17902778 is 55.10445.

1 OMS numeric expression

The DEG function converts an angle argument in OMS (Degrees, Minutes, Seconds)
format to DEG (Decimal Degrees) form. In OMS format the integer portion of the
number represents degrees, the first and second digits of the decimal represent
minutes, the third and fourth digits of the decimal represent seconds, and any further
digits represent decimal seconds. For example, 55° 1 O' 44.5" is represented as
55.10445. In DEG format the integer portion is degrees and the decimal portion is
decimal degrees. DEG 55.10445 is 55.17902778.

1 DEG numeric expression

CUR is a numeric function which returns cubic root of its argument. CUR 8 is 2.

1 CUR numeric expression

COS is a numeric function which returns cosine of the angle argument. The value
returned depends on whether the COMPUTER is in decimal degree, radian, or grad
mode for angles. COS 60 is 0.5 in the decimal degree mode.

1 COS numeric expression

ATN is a numeric function which returns the arc tangent of the numeric argument. The
arc tangent is the angle whose tangent is equal to the expression. The value returned
depends on whether the COMPUTER is in decimal degree, radian, or grad mode for
angles. ATN 1. is 45 in the decimal degree mode.

1 ATN numeric expression

ASN is a numeric function which returns the arc sine of the numeric argument. The arc
sine is the angle whose sine is equal to the expression. The value returned depends on
whether the COMPUTER is in decimal degree, radian, or grad mode for angles.
ASN.5 is 30 in the decimal degree mode.

1 ASN numeric expression

Functions
Numeric Functions

181

LOG is a numeric function which returns the logarithm to the base 10 of its numeric
argument. LOG 100 is 2.

1 LOG numeric expression

LN is a numeric function which returns the logarithm to the base e (2.718281828) of
its numeric argument. LN 100 is 4.605170186).

LN numeric expression

INT is a numeric function which returns the integer part of its numeric argument. INT Pl
is 3.

1 INT numeric expression

HSN is a numeric function which returns the hyperbolic tangent· of the numeric
argument. HTN 1 is 0.761594156.

1 HTN numeric expression

HSN is a numeric function which returns the hyperbolic sine of the numeric argument.
HSN 4 ls 27 .2899172.

[1 HSN numeric expression

HCS is a numeric function which returns the hyperbolic cosine of the numeric
argument. HCS 5 is 74.20994852.

1 HCS numeric expression

FACT is a numeric function which returns the factorial of its argument. FACT 5 is 120.

1 FACT numeric expression

EXP is a numeric function which returns the value of e (2. 718281828-the base of the
natural logarithms) raised to the value of the numeric argument. EXP 1 is
2.718281828.

1 EXP numeric expression

Functions
Numeric Functions

182

AND is a numeric function which generates random numbers. If the value of the
argument is less than one but greater than or equal to zero, the random number is less
than one and greater than or equal to zero. If the argument is an integer greater than or
equal to 1, the result is a random number greater than or equal to 1 and less than or
equal to the argument. If the argument is greater than or equal to 1 and not an integer,
the result is a random number greater than or equal to 1 and less than or equal to the
smallest integer which is larger than the argument. (In this case, the generation of the
random number changes depending on the value of the decimal portion of the
argument.)

1 RND numeric expression

REC is a numeric function which converts numeric arguments in polar coordinates
format to rectangular coordinates format.
The first numeric argument indicates the distance and second numeric argument
indicates the angle which depends on whether the COMPUTER is in decimal degree,
radian, or grad mode for angles. The values converted, the distances from the y-axis
and the x-axis, are assigned into the fixed variables Y and Z, respectively. REC (7,
50) is (4.499513268, 5.362311102) in decimal degrees.

1 REC (numeric expression, numeric expression)

RCP is a numeric function which returns the reciprocal of its numeric argument. RCP 5
is 0.2.

1 RCP numeric expression

POL is a numeric function which converts numeric arguments in rectangular coor
dinates format to polar coordinate format.
The first numeric argument indicates the distance from the y-axis and the second
numeric argument indicates the distance from the x-axis. The values converted, the
distance and the angle in the polar coordinates, are assigned to the fixed variables Y
and Z, respectively. The angle converted depends on whether the COMPUTER is in
decimal degree, radian, or grad mode for angles. POL (3, 4) is (5, 53.13010235)
in decimal degrees.

1 POL (numeric expression, numeric expression)

Functions
Numeric Functions

183

SOU is a numeric function which returns the square of its numeric argument.
SQU 3 is 9.

i SQU numeric expression

SOR is a numeric function which returns the square root of its argument. It is identical
to the use of the special square root symbol (V) on the keyboard. SOR 4 is 2.

1 SQR numeric expression

SIN is a numeric function which returns the sine of the angle argument. The value
returned depends on whether the COMPUTER is in decimal degree, radian, or grad
mode for angles. SIN 30 is 0.5 in decimal degrees.

SGN is a numeric function which returns a value based on the sign of the argument. If
the argument is positive, the result is 1; if the argument is zero, the result is O; if the
argument is negative, the result is ~1. SGN -5 is -1_

[-1- SIN numeric expression

1 SGN numeric expression

ROT is a numeric function which returns the power root of its argument.
125 ROT 3 is 5.
(i.e.: ~125 should be entered as 125 ROT 3.)

1 numeric expression ROT numeric expression

The same sequence of random numbers is normally generated because the same
"seed" is used each time the COMPUTER is turned on. To randomize the seed, see
the RANDOM verb.

Lower Bound Argument Upper Bound

<1
2
3

0< _5
2
2.5

- - - - - - - - - - - - Result - - - - · . · · -

Functions
Numeric Functions

184

TEN is a numeric function which returns the value of 10 (the base of the common
logarithms) raised to the value of its numeric argument.
TEN 3 is 1000.

1 TEN numeric expression

TAN is a numeric function which returns the tangent of its angle argument. The value
returned depends on whether the COMPUTER is in decimal degree, radian, or grad
mode for angles. TAN 45 is 1 in decimal degrees.

1 TAN numeric expression

Functions
Numeric Functions

185

MID$ is a string function which returns a middle portion of the string in the first argument.
The first numeric argument indicates the first character position to be included in the
result. The second numeric argument indicates the number of characters that are to be
included. MID$ ("ABCDEF", 2,3) is "BCD".

1 MID$ (string expression, num. exp. 1, num. exp. 2)

LEN is a string function which returns the length of the string argument. LEN
"ABCDEF" is 6.

1 LEN string expression

LEFT$ is a string function which returns the leftmost part of the string in the first
argument. The number of characters returned is determined by the numeric expres
sion. LEFT$ ("ABCDEF", 2) is "AB".

1 LEFT$ {string expression, numeric expression)

CHR$ is a string function that returns the character which corresponds to the numeric
character code of its argument. The chart of character codes and their relationship to
characters is given in Appendix B. CHR$ 65 is "A".

~-------------------------·-·-·-··-·-
1 CHR$ numeric expression

ASC is a string function which returns the numeric character code value of the first
character in its argument. The chart of character codes and their relationship to
characters is given in Appendix B. ASC "A" is 65.
The COMPUTER uses ASC! I codes and their characters.

1 ASC string expression

String functions are a group of operations used for manipulating strings. Some take a
string argument and return a numeric value. Some take a string argument and return a
string. Some take a numeric value and return a string. Some take a string argument
and one or two numeric arguments and return a string. Many dialects of BASIC require
the argument of a function to be enclosed in parentheses. The COMPUTER does not
require these parentheses, except when it is necessary to indicate what part of a more
complex expression is to be included in the argument. String functions with two or three
arguments all require the parentheses.

String Functions

Functions
String Functions

186

Note: The character string convertible by VAL function to a numerical value consists of
numerals (0 to 9), symbols (+ and -) and a symbol (E) indicating an
exponential portion. No other characters and symbols are included. If a
character string includes other characters and symbols, any character string on
the right of that character string will be ignored. If included in a character string,
a space is usually regarded as nonexistent.

VAL is a string function which returns the numeric value of its string argument. It is the
reverse of STR$. The VAL of a nonnumber is zero. VAL "1.59" is 1.59.

1 VAL string expression

STR$ is a string function which returns a string which is the character representation of
its numeric argument. It is the reverse of VAL. STR$ 1.59 is '1.59'.

1 STR$ numeric expression

RIGHT is a string function which returns the rightmost part of the string in the first
argument. The number of characters returned is determined by the numeric expres
sion. RIGHT$ ("ABCDEF", 3) is 'DEF'.

1 RIGHT$ (string expression, numeric expression)

Functions
String Functions

187

1. Press I ENTER I key.

There is a display, but no response
to keystrokes

There is nothing on the display after
you have turned on the machine

Then You Should: If:

1. Check to see that the power switch is
in the ON position.

2. Press the i[__~l key to see if AUTO
POWER OFF has been activated.

3. Replace the batteries.
4. Adjust the contrast control.

1 . Press ,~ key to clear.
2. Press ~ (i s1-11Fr I ~) key to

clear.
3. Turn the power OFF and ON again.
4. Hold down any key and push RESET

button.
5. Push RESET button without pressing

any key.

1. Press I ENTER I key. You get no response after you have
typed in a calculation or answer

The machine displays something
and stops while you are running a
BASIC program

Your calculation entered is displayed 1. Change the mode from PROgram to
in BASIC statement format (colon RUN for calculations.
after the first number)

Machine Operation

This chapter provides you with some hints on what to do when your SHARP
COMPUTER does not do what you expect from it. It is divided into two parts-the ti rst
part deals with general machine operation and the second with BASIC programming.
For each problem, there are a series of remedies suggested. You should try each of
these, one at a time, until you have solved the problem.

CHAPTER 9 ·,,
TROUBLESHOOTING

Troubleshooting

188

You get no response from any keys 1. Hold down any key and push RESET
button.

2. If you get no response from any key
even after the above operation, push
RESET button. Then, press [YJ ,
m I orl ENTER I in response to
"MEMORY CLEAR O.K. ?"
message. This will clear the programs
and data in memory.

If: Then You Should:

Troubleshooting

189

6. Use TRON and TROFF, either as commands or directly within the program to trace
the flow of the program through individual lines. Stop to examine the contents of
critical variables at crucial points. This is a very slow way to find a problem, but
sometimes it is also the only way.

When entering a new BASIC program, it is usual for it not to work the first time. Even if
you are simply keying in a program that you know is correct, such as those provided in
this manual, it is usual to make at least one typing error. If it is a new program of any
length, it will probably contain at least one logic error as well. Following are some
general hints on how to find and correct your errors.

You run your program and get an error message:

1. Go back to the PROgram mode and use the [D or the [D key to recall the line
with the error. The cursor will be positioned at the place in the line where the
COMPUTER got confused.

2. If you can't find an obvious error in the way in which the line is written, the problem
may lie with the values which are being used. For example, CHR$(A) will produce
a space if A has a value of 1. Check the value of each variable in either the RUN or
the PROgram mode by typing in the name of the variable followed by I ENTER I .

You RUN the program and don't get an error message, but it doesn't do what you
expect.

3. Check through the program line by line using LIST and the [1] and [I] keys to
see if you have entered the program correctly. it is surprising how many errors can
be fixed by just taking another look at the program.

4. Think about each line as you go through the program as if you were the computer.
Take sample values and try to apply the operation in each line to see if you get the
result that you expected.

5. Insert one or more extra PRINT statements in your program to display key values
and key locations. Use these to isolate the parts of the program that are working
correctly and the location of the error. This approach is also useful for determining
which parts of a program have been executed. You can also use STOP to
temporarily halt execution at critical points so that several variables can be
examined.

BASIC De.bogging'

Troubleshooting

191

• If the computer is subjected to strong static electricity or external noise, it may
"hang up" (all keys become inoperative). If this occurs. press the RESET button
while holding down any key. (See Troubleshooting.)

• Keep this manual for further reference.

• To avoid battery leakage, remove the batteries when the computer will not be used
for an extended period of time.

• If service should be required on this equipment, use only a SHARP servicing
dealer, SHARP approved service facility, or SHARP repair service where avail
able.

To insure trouble-free operation of your SHARP COMPUTER, we recommend the
following:

• Always handle the COMPUTER carefully as the liquid crystal display is made of
glass.

• Keep the computer in an area free from extreme temperature changes, moisture,
or dust. During warm weather, vehicles left in direct sunlight are subject to high
temperature buildup. Prolonged exposure to high temperature may cause damage
to your computer.

• Use only a soft, dry cloth to clean the computer. Do not use solvents, water, or a
wet cloth.

Maintenance of the Computer

193

WAIT 66000

• Illegal function argument. This means that you have tried to make the
COMPUTER do something that it just can't handle.

The time interval specified for the WAIT verb is greater than 65535.

DIM 8(256)

3 DlMension error/Argument error

• Array variable already exists.

Array specified without first dimensioning it.

Array subscript exceeds size of array specified in DIM statement.

3. An illogical calculation has been attempted.

LN -30 or ASN 1.5

510

Here you have probably done one of three things:

1. Tried to use too large a number.
Calculation results are greater than 9.999999999E 99.

2. Tried to divide by zero.

2 Calculation error

There are nine different error codes built into the COMPUTER. The following table will
explain these codes.

Error Meaning
Number

1 Syntax error

• This means that the COMPUTER can't understand what you have
entered. Check for things such as semicolons on the ends of PRINT
statements, misspelled words, and incorrect usages.

. APPENDIX A
Error Messages

APPENDIX A
Error Messages

194

This code will be displayed whenever the computer has a problem that
isn't covered by one of the other eight error codes. One of the most
common causes for this error is trying to access data in a variable in one
fashion (e.g., A$) while the data was originally stored in the variable in
another fashion (e.g., A).

9 Other errors

8 1/0 device error

This error can happen only when you have the optional printer and/or
cassette recorder connected to the COMPUTER. It means that there is a
problem with communication between the 1/0 device and the COM~
PUTER.

This means that you have put an illegal format specifier into a USING
statement.

7 PRINT USING error

Buffer space exceeded.

6 Memory overflow

Generally this error happens when you've tried to DIMension an array
that is too big for memory. This can also happen when a program becomes
too large.

5 Nesting error

Subroutine nesting exceeds 10 levels.

FOR loop nesting exceeds 5 levels.

RETURN verb without a GOSUB, NEXT verb without a FOR, or READ
verb without a DAT A

2. Tried to use too large a line number. The maximum line number is
65279.

Here you have probably done one of two things:

1. Tried to reference an nonexistent line number with a GOTO,
GOSUB, RUN, LIST, THEN, or the like.

4 Line number error

APPENDIX A
Error Messages

195

Error message Description

ERROR 1 A syntax error exists in the RENUM command.

ERROR 1 A line number reference is missing from the command
IN line number specifying the jump destination (e.g., GOTO, GOSUB,

etc.).

ERROR 3 A line number greater than 65279 is encountered during
IN line number the execution of the RENUM command.

The length of one program line exceeds 79 bytes.

ERROR 4 The specified old line number does not exist in the
program.

ERROR 4 The line number specified as the jump destination does
IN line number not exist in the program file.

-~· ·---

ERROR 6 Memory capacity is insufficient to execute the RENUM
command, or becomes short during the renumbering
process. ~~

ERROR 9 An attempt was made to execute the RENUM in other
than PRO (Program) mode. An attempt was made to
change the execution order of program lines by
specifying the new line number lower than the line
number immediately before the old line number.

ERROR 9 The line number specified as the jump destination is
IN line number inappropriate, because it uses a variable, expression, or

function (i.e., incorrect line number reference).

ERRORS RELATED TO REN UM

APPENDIX A
Error Messages

197

The following chart shows the conversion values for use with CHR$ and ASC. The
column shows the first hex character or the first four binary digits (i.e., bits); the row
shows the second hex character or the second four bits. The upper left corner of each
box contains the decimal number for the character. The lower right shows the
character. It no character is shown, then it is an illegal character on the COMPUTER.

For example, the character "A" is decimal 65 or hex 41 or binary 01000001. The
character 'v-' is decimal 252 or hex FC or binary 11111100.

Notes:
• The characters for character codes 92(&5C), 249(&F9), and 250(&FA)

appearing on the computer display differ from the characters for these codes printed
by optional printers CE-126P.

• The character printed for character code 92(&5C) shown in the following table is
.._ with the CE-126P printer.

• When using the CE-126P printer, do not use code 0(&00).
• Any codes other than O (&00) through 31 (&1F) not used for characters are

printed as spaces.
• Codes 249 (&F9) and 250 (&FA) are spaces.

APPENDIX B ' I

CHARACTER cons CHART '

APPENDIXB
Character Code Chart

198

s
e
c
0
n
d
4
B

Hex 0 1 2 3 4 5 6 7 8 E F
Binary --

0000 0001 0010 0011 0100 0101 0110 0111 1000 1110 1111 ..
0 0 16 32 48 64 80 96 112 128 224 240 ~

0000 NUL SPACE 0 @ p ' p
..

1 1 17 33 49 65 81 97 113 129 225 241 ,__
0001 ! 1 A a a q

-- 2 2 18 34 50 66 82 98 114 130 226 242 ,__
0010 " 2 B R b r ..
3 3 19 35 51 67 83 99 115 131 227 243 ,__

0011 # 3 c s c s
..

4 4 20 36 52 68 84 100 116 132 228 244 ,__
0100 $ 4 D T d t ..

5 5 21 37 53 69 85 101 11 7 133 229 245
L---

0101 % 5 E u e u • ..
6 6 22 38 54 70 86 102 118 134 230 246 -

0110 & 6 F v f v •
7 7 23 39 55 71 87 103 119 135 231 247 - 0111 , 7 G w g w + ..
8 8 24 40 56 72 88 104 120 136 232 248

-
1000 (B H x h x •
9 9 25 41 57 73 89 105 121 137 233 249 - I 1001 I 9 I y i y

..
A 10 26 42 58 74 90 106 122 138 234 250

'--- ~ 1010 * J z j z ~
B 11 27 43 59 75 91 107 123 139 235 251 ..___

1011 + K ' k I " ..
c 12 28 44 60 76 92 108 124 140 236 252 ...___

1100 ' < L -, I .J -·
D 13 29 45 61 77 93 109 125 141 237 253 ..___

1101 - = M I m 1
..

E 14 30 46 62 78 94 110 126 142 238 254 ..___
1110 > N A n - ..

F 15 31 47 63 79 95 111 127 143 239 255 ..___
1111 I ? 0 - 0 ..

s

First 4 Bits

APPENDIXB
Character Code Chart

199

Numeric Masks
A numeric USING mask may only be used to display numeric values, i.e., numeric
constants or numeric variables. If a string constant or variable is displayed while a
numeric USING mask is in effect, the mask will be ignored. A value that is to be
displayed must always fit within the space provided by the mask. The mask must
reserve space for the sign character, even when the number will always be positive.
Thus a mask that shows four display positions may only be used to display numbers
with three digits.

Wherever a USING verb is used, it will control the format of all output until a new
USING verb is encountered.

50: PRINT USING M$; N

A USING verb may also be used within a PRINT statement:

40: USING

When the USING verb is used with no mask, all special formatting is canceled.

10: USING"####"
20: M$="&&&&&&"
30: USING M$

It is sometimes important or useful to control the format as well as the content of the
output The COMPUTER controls display formats with the USING verb. This verb
allows you to specify:

• the number of digits
• the location of the decimal point
• the scientific notation format
• the number of string characters

These different formats are specified with an "output mask". This mask may be a
string constant or a string variable:

I I APPENDIX c ' ' ,,•
, I • ,

1 1 1 ,

FO.RMATTING OUTPUT ,,.
' I ' '

APPENDIXC
Formatting Output

200

40: PRINT 2.547

30: PRINT-350.5

25. 001

l-350. 501

2. 541

20: PRINT 25

10: USING"####.##"

Display Statement

A decimal point character, '.', may be included in a numeric mask to indicate the
desired location of the decimal point. If the mask provides more significant decimal
digits than are required for the value to be displayed, the remaining positions to the
right will be filled with zeros. If there are more significant decimal digits in the value than
in the mask, the extra digits wilt be truncated (not rounded):

Specifying a Decimal Point

Notice that the last statement produced an error because 5 positions (4 digits and a
sign space) were required, but only 4 were provided in the mask.

ERROR 7 IN 40 40: PRINT 1000

30: PRINT-350

20: PRINT 25

Display

(Set the COMPUTER to the RUN
mode, type RUN, and press I ENTER I .)
I 2 51

l-3 501

HJ: USING"####"

Statement

The desired number of digits is specified using the '#' character. Each '#' in the
mask reserves space for one digit. The display or print always contains as many
characters as are designated in the mask. The number appears to the far right of this
field; the remaining positions to the left are filled with spaces. Positive numbers
therefore always have at least one space at the left of the field. Since the COMPUTER
maintains a maximum of 10 significant digits, no more than 11 '#' characters should
be used in a numeric mask.
When the total number of columns of the integer part specified exceeds 11, this integer
part is regarded as 11 digits in the COMPUTER.

NOTE: In all examples in this appendix, the beginning and end of the displayed field
will be marked with an 'I' character to show the size of the field.

Specifying Number of Digits

APPENDIXC
Formatting Output

201

30: PRINT "ABCDEFGHI"

IA BC

JABCDEFI

20: PRINT "ABC"

10: USING"&&&&&&"

Display Statement

String constants and variables are displayed using the '&' character. Each '&'
indicates one character in the field to be displayed. The string will be positioned at the
left end of this field. If the string is shorter than the field, the remaining spaces to the
right will be filled with spaces. If the string is longer than the field, the string will be
truncated to the length of the field:

l-3. 65 E 021 30: PR INT -365.278

l 2. 00 E 00! 20: PRINT 2

10: USING"###.##""

Display Statement

A",.,_·., character may be included in the mask to indicate that the number is to be
displayed in scientific notation. The '#' and '.' characters are used in the mask to
specify the format of the "characteristic" portion of the number, i.e., the part which is
displayed to the left of the E. Two '#'characters should always be used to the left of
the decimal point to provide for the sign character and one integer digit. The decimal
point may be included, but is not required. Up to 9 '#'characters may appear to the
right of the decimal point. Following the characteristic portion, the exponentiation
character, E, will be displayed followed by one position for the sign and two positions
tor the exponent. Thus, the smallest scientific notation field would be provided by a
mask of "##"" which would print numbers of the form '2E 99'. The largest
scientific notation field would be "##.#########"" which would print numbers
such as '-1.234567890 E -12':

Specifying Scientific Notation

APPENDIXC
Formatting Output

202

Remember that a U SJ NG format once specified is used for all outputs which follow until
canceled or changed by another USING verb.

I -5. 78DBI 20: PRINT -5.789; "DB"

Hil:PRINTUSING"###.##&&";25;"CR" I 25. 00CR[

Display Statement

In most applications, a USING mask will contain either all numeric or all string
formatting characters. However, both types of characters may be included in one
USING mask for certain purposes. In such cases, each switch from numeric to string
formatting characters or vice versa marks the boundary for a different value. Thus, a
mask of "#####&&&&" is a specification for displaying two separate values-a
numeric value which is allocated 5 positions and a string value which is allocated 4
positions:

Mixed Masks

APPENDIXC
Formatting Output

203

When there are two or more operators at the same priority level, the expression will be
evaluated from left to right. (The exponentiation will be evaluated from right to left.)
Note that with A+B-C, for example, the answer is the same whether the addition or
the subtraction is done first.

When an expression contains multiple nested parentheses, the innermost set is
evaluated first and evaluation then proceeds outward.

Operation
Parentheses
Variables and Pseudovariables
Functions
Exponentiation (,...), (ROT)
Unary minus, negative sign (-)
Multiplication and division (*, /)
Addition and subtraction (+, -)
Relational operators(<, <=, =, <>, >=, >)
Logical operators (AND, OR, NOT, XOR)

Level
1
2
3
4
5
6
7
8
9

Operators on BASIC mode cf the SHARP COMPUTER are evaluated with the following
priorities from highest to lowest:

OperatorPrtority

Since the COMPUTER must have some way to decide between these options, it uses
its rules of operator priority. Because division has a higher "priority" than addition
(see below), it will choose to do the division first and then the addition, i.e., it will
choose the second option and return a value of 65 for the expression.

or
5 + 45

100 + 45 = 65
5

= 2

as either a calculation or as a part of a program, the COMPUTER does not know
whether you meant:

100 / 5+45

When the SHARP COMPUTER is given a complex expression, it evaluates the parts
of the expression in a sequence determined by the priority of the individual parts of the
expression. If you enter the expression:

APPENDIXD
Expression Evaluation and Operator Priority

204

This is the value of the expression.

0.38

And last of all, the division is performed:

38/100

The exponentiation is done next:

38/10 "'2

Now that the parentheses are cleared, the LOG function has the highest priority so it is
done next:

38/10 "'LOG 100

or:

(38)/1 0 "' LOG 100

And then the addition:

(36+2)/10 "LOG 100

(6*6+2)/10 "LOG 100

In the next set of parentheses, it would do the multiplication first:

or:

((6)*6+2)/10"' LOG 100

Then it would do subtraction:

((8-2)*6+2)/10 "' LOG 100

The COMPUTER would first evaluate the innermost set of parentheses. Since '+'
and '-' are at the same level, it would move from left to right and would do the
addition first:

((3+5-2)*6+2)/10 "'LOG 100

Starting with the expression:

Sample Evaluation

For levels 3 and 4, the last entry has a higher priority.

For example: -2"' 4 ~ -(24)

3"' -2 ~ 3-2

APPENDIXD
Expression Evaluation and Operator Priority

205

[!] • Multiplication key
• Used to designate an array variable in the INPUT#, the PRINT#, etc.

[ZJ • Division key

[P_J ~ w • Numeric keys

GJ • Decimal point
• Used to enter an abbreviation for a command, verb, or function.
• Used to designate the decimal portion in USING format designation.

W • Used to designate an exponent in scientific notation. (This is the letter E
key.)

Ifill • Used to designate an exponent in scientific notation.

ON
~ (ON)

Used to turn the COMPUTER power on when the auto power off function is
in effect.
{BREAK)

• Depression of this key during program execution functions as a BREAK
{ !&i) key and causes to interrupt the program execution.

• When pushed during manual execution of an input/output command such
as BEEP, CLOAD, etc., execution of the command is interrupted.

I sH1FT I • This yellow key is used to designate a second function (that inscribed in
brown above each key).

?

Ex. I sH1rTJ :_~J ~ ? is input.

!c~sE • Used to clear the contents of the entry and the display. (Error release)

~sHIFTi • Used to not only clear the display contents, but to reset the computer to its
~ initial state.

- Initial state -
• Resets the WAIT timer.
• Resets the display format. (USING format)
• Resets the TRON state {TROFF).
• Resets the PRINT = LPRINT.
• Resets error.

APPENDIXE
Key Functions in BASIC Mode

206

I sH1nl 00 • Used to designate Pi (7T).

!£] • Used to designate square root.

[I] , [j J • Used to input parentheses.

1sHiFr1 W }• Used when inputting logical operators in IF statement.
I SHIFTI 12]

~ • Used to provide space when inputting programs or characters.

I sH1Fr I~ • Used for power calculation instructions.
• Used to specify the floating decimal point system (exponent display) for

numerical data in USING statement instructions.

I sH1FT I c::::J • Used to provide multi-display (two or more values/contents/displayed at a
time).

• Used to provide pause between the instruction and the variable.

@] • Used in assignment statements to assign the contents (number or charac-
ter) on the right for the variable specified on the left.

• Used when inputting logical operators in IF statement.

oom • When any one of eighteen keys (A, S, 0, F, G, H, J, K, L, Z, X, C, V,
B, N, M, ', SPaCe) is pushed after the depression of the key, the
computer starts to execute the program from the program line that has the
same label as the key code depressed.

1JO ~ W • Letter keys. You are probably familiar with these keys from the standard
typewriter keyboard. On the COMPUTER display, the characters appear
in the uppercase.

[±] • Addition key

El • Subtraction key

I SHIFT I rn • Used to enter CLO AD?

I SHIFT I CJ • Used to divide two or more statements in one line.

0 • Used to provide pause between two equations, and between variables or
comments.

APPENDIXE
Key Functions in BASIC Mode

207

loft hyp

I &M1Fr I CJ• Used to enter an inverse hyperbolic function.

[sinJ ~CE] l
[SHIFT 1 I!!!'] • Used to enter a function defined in each key.
I SHIFT I rnJJ

~ • Used to set the CAL mode.

~ & Used to set the RUN mode when the CAL mode is set.
Used to set the PRO mode when the RUN mode is set.
The RUN and PRO modes are selected alternately each time you press the
~key.

I sH1Fr I~. Used to set the print or nonprint mode when an optional printer is con
nected with the COMPUTER.

[sH1Ffl I@ • Used to designate an angular unit (DEG, RAD, or GRAD).

~ • Used to enter a hyperbolic function.

Used to preset command and verb keys. Pressing I sH1n I and then the
letter (including comma and space) key below the command or verb
desired followed by I ENTER! key causes the designated command or verb to
be entered into the COMPUTER.

I SHIFT[D.
l

CLOAD
[SHIFT[CJ

Used to designate these symbols.
• Used to designate and cancel characters.
• Used to specify labels.

Used with USING statement, to provide the instruction to define the
display format of numerical data.

$ • Used when assigning character variables.
& • Used with USING statement, to provide the instruction to define

the display format of character string.
• Used to designate hexadecimal number.

CEJ • Used to shift the cursor to the right (press once to advance one position,
hold down for automatic advance).

• Used to execute playback instructions.
• Used to clear an error condition in manual operation.

~ • Used to shift the cursor to the left (press once to advance one position,
hold down for automatic advance).

• Used to execute playback instructions.
• Used to clear an error condition in manual operation.

'. sMirrl ~ • Used lo insert a space (=: appears) of I-step capacity between the
address (N) indicated by the cursor and the preceding address (N-1)

i SHIFT I I@ • Used to delete the contents of the address indicated by the cursor.

[~!!IFTJ [__1.J.

~

L":J
[JU
1·s I
l"&.]
LU

[sH1fi] '-" I

APPENDIXE
Key Functions in BASIC Mode

208

APPENDIXE
Key Functions in BASIC Mode

I ENTER I • Used to enter a program line into the computer.
• Used for writing a program.
• Used to request manual calculation or direct execution of a command

statement by the computer.
• Used to enter a restart instruction after inputting data required by an INPUT

statement or after executing a PRINT statement.

Refer to page 45 for the keys used for MATRIX operations.

209

Note: The following keys cannot be used in the BASIC mode (RUN or PRO mode).
lfg] • I SHIFT I ~ ' '=!] • I SHIFT I lfu!: . I SHIFT I ~ . ~ • lliMJ ' [M±l '
[±d, ana Keys used to obtain the statistics (i.e., n, x, etc.}

Mode State ITT rtl
RUN Program being executed ------- Program is temporarily To execute the next To display the

interrupted line program line being
INPUT statement being executed or already

executed executed, hold this
key down.

PRINT statement just
now executed
Under break

Error condition during

~

To display the error-
executing program producing line, hold

this key down.

TRON condition To execute debugging To display the
operation program line being

executed or already
executed, hold this
key down. ~ -- ·--··

Other conditions To display an answer Same as left
just previously
calculated. (Last
answer function}

PRO (When the mode is changed from RUN to PRO and program line is not
being displayed}
Program is temporarily To display the line Same as left
interrupted interrupted

Error condition To display the line Same as left
with error

Other conditions To display the first line To display the last
line

(When the program line is being displayed}
To display the next To display the
program line preceding program

line

The [I] and [I] keys have the following functions, depending on the designated
mode, as well as the state of the computer.

APPENDIXE
Key Functions in BASIC Mode

211

0°C to 40°C
170(W)x72(D)x9.5(H) mm.
6-11/16"(W) x2-27/32"(0) x3/8"(H)

Addition, subtraction, multiplication, division, trigonometric
and inverse trigonometric functions, logarithmic and
exponential functions, angle conversion, square and square
root, sign, absolute, integer, relational operators, logical
operators, matrix operations.
10 digits (mantissa) + 2 digits (exponent).
Cursor left and right, line up and down, character insert,
character delete.
CMOS Battery backup.
24-character Liquid Crystal Display with 5 x 7 dot pattern.
77 keys: Alphabetics, numerics, special symbols, functions,
and user defined keys.
6.0V DC: Lithium cells.
Type: CR-2032x2
6.0V DC @ 0.03W
Approximately 120 hours of continuous operation under nor
mal conditions (based on 10 minutes of operation or program
execution and 50 minutes of display per hour at a temperature
of 20°C). The time may vary slightly depending on usage and
the type of battery used.

16 stacks
8stacks

6878Bytes
Function:
Data:

208Bytes Fixed Memory Area
(A ~ Z, A$ - Z$)
Program/Data Area

Subroutine: 10 stacks
FOR-NEXT: 5 stacks

Approx. 1 .1 K Bytes
RAM:

System
User

72K Bytes

PC-1403 Pocket Computer
8-bit CMOS CPU
BASIC

Operating
Temperature:
Dimensions:

Power Consumption:

Power Supply:

Memory Protection:
Display:
Keys:

Numeric Precision:
Editing Features:

Operators:

Stack:

Model:
Processor:
Programming
Language:
System ROM:
Memory Capacity:

APPENDIXF .
SPECIFICATIONS

APPENDIXF
Specifications

2i2

Approximately 150 g (0.33 lb) (with two cells)
Hard cover, two lithium cells (built-in), keyboard template,
operation manual.
Printer/Cassette Interface (CE-126P) Option:

Weight:
Accessories:

APPENOIXF
Specifications

213

3. Programs containing POKE or CALL commands written on the PC-1250
Series cannot be executed on the PC-1403. Execution of such programs
may render all PC-1403 keys inoperable.

Although the functions of these models al! differ slightly, programs composed on any of
these models can be used on the PC-1403 by making the modifications below.

Notes: 1. PC-1403 can read programs from tapes recorded with programs written on
PC-1210 Series, PC-1245 Series, and PC-1250 Series computers, but
programs written and recorded with PC-1403 cannot be read or used by
computers in these three series.

2. Program tapes for the PC-1245 Series and PC-1210 Series recorded with
a number at programs loaded with the MERGE command cannot be used
on the PC-1403. To use them, MERGE the programs individually into the
PC-1403.

PC-1210 Series: PC-1210/11
PC-1245 Series: PC-1245/46/47
PC-1250 Series: PC-1250/51
PC-1260 Series: PC-1260/61
PC-1350 Series: PC-1350
PC-1401 Series: PC-1401/02
PC-1450 Series: PC-1450
PC-1460 Series: PC-1460
PC-2500 Series: PC-2500

Programs written on the following computers can be used on the PC-1403 with slight
modifications.

', •,, APPE,NDIX.G
I ; I J " I ~ 1, I • ' : ' 1 tr·~ ·. ' t I I I , L ' I I

. · USING PROGRAMSWRITIEN . :,'·1

ON OTHER PC MODELS .-

APPENDIXG
Using Programs Written on Other PC Models

214

(4) Value of a loop variable after completion of a FOR-NEXT loop:
The value of a loop variable obtained after the execution of a FOR-NEXT loop
completed on the PC-1403 is different from that obtained on the PC-1245 Series.
If the value of a loop variable is used in a conditional expression in a PC-1245
Series program, increment it by one when it is used on the PC-1403.

(3) Data 1/0 statement for tape files:
On the PC-1245 Series, the execution of, for instance, the PRINT# C statement
saves the contents of the variable C and all the subsequent variables to a tape file.
On the PC-1403, however, the execution of the same statement saves the
contents of the variable Conly. To save the contents of a specific variable and all
the subsequent variables, use the specifications on the right side of the following
examples:

e.g., PRINT#A-7PRINT#A*
INPUT#~INPUT#C*

DIM A(30)-7A(30)=0

e.g., A=SIN B~A=SIN (B*C)

(2) Definition of subscripted variables (such as A()) by using the DIM statement:
On the PC-1245 Series, if, for example, DIM A(30) is executed, memory
locations for A(27) through A(30) are set aside as an extension of a fixed variable
definition area. On the PC-1403, however, the execution of DIM A(30) reserves
a separate memory area for array variables A(0) through A(30) for the array
named A. When defining subscripted variables (such as A()) as an extension
of fixed variables, use the specification on the right side of the following example:

tMfif :JJl;!ij'''i4·•GDA+itl'"i*i1it¥t@atm11.i.1:at+1,w
When using on the PC-1403 a program developed for the PC-1245 Series, the
following modificiations are necessary:

(1) Multiplication without using the operator "*". On the PC-1245 Series, the
operator (*) for multiplication may be omitted, such as AB for A*B or CD for
C*D. On the PC-1403, however, the multiplication operator (*) cannot be
omitted since the computer treats two consecutive characters, such as AB or CD,
as simple variables. Use the specification on the right side of the following
example:

APPENDIXG
Using Programs Written on Other PC Models

215

Note: As shown above, the PC-1403 does not have the character IE.

Character Code PC-1245 PC-1403

39 (&27)
91 (&5B) -r: [
92 (&SC) ¥ \
93 (&5D) rt l
96 (&60) E

250 (&FA) -(Error)
251 (&FB) -(Error) rt
252 (&.FC) -(Error) \f

If a PC-1245 program is read from a tape file into the PC-1403, the change for the
exponent symbol described just above will automatically be done by the PC-1403.

(7) The character codes of the PC-1245 Series are partially different from those of the
PC-1403.
When the following codes are designated by the CHR$ function, change the
codes.

e.g., 100 "=": ... 100 "N": ...

(6) Exponent symbol "IE":
The PC-1403 uses the uppercase letter "E" for its exponent symbol. The
following changes are required:

A= 1.234 IE 5--.A= 1.234E5
B=IE ~B=1E6

(5) Redefining @]
The equal @] key does not function as a definable key on the PC-1403.
Accordingly, a different key should be used in programs in which the equal key is
defined.

e.g., 10 FOR 1=0 TO 10

50 NEXT I
60 IF 1=10 THEN 100
Modify the value of I in line 60 as follows:
60 IF 1=11THEN100
(On the PC-1403, the value of a loop variable must be incremented
by one step value. The number of loop execution cycles remains the
same, however.)

APPENDIXG
Using Programs Written on Other PC Models

216

50 IF A>L THEN PRINT "A"

and results in an error when it is entered through the keyboard.
The error occurs because a command which does not exist in the PC-121 O Series
does in fact exist in the PC-1403. To solve this problem, insert a THEN command
into the IF statement as follows.

50 IF A>LPRINT "A" (Print out "A" if A>)

(1) IF statement
If, for example,

50 IF A>L PRINT "A" (display "A" if A>L)

is found in the program for the PC-121 O Series Pocket Computers, it is interpreted
as

To use PC-1210 Series programs on the PC-1403, they must be modified in the same
way as PC-1245 Series programs except items (2) and (7). In addition, the following
modifications are necessary.

Modifications Required for PC-1210Series

(1) The PC-1245 Series uses a line number ranging from 1to999, whereas the PC-
1403 has an extended line number ranging from 1 to 65279. Therefore, the line
number uses 3 bytes in RAM (PC-1245 Series uses 2 bytes). The modification is
carried out automatically when the program is loaded through the cassette tape.
However, there is a possibility of memory overflow (ERROR 6) when loading or
execuiing a long program. Further, when a singie line is close to 80 bytes long,
this modification may result in the erasing of the end of the line.

(2) If the tape stops or the read alarm stops when reading a program from a tape with
PC-1245 Series programs, the computer will remain busy for 1 or 2 seconds and
two asterisks will appear in the display.
This is because the computer is modifying the line numbers as described in (1}
above.

Additional modifications

APPENDIXG
Using Programs Written on Other PC Models

217

(5) Variables
When the RUN command has been executed in the PC-121 O Series, all variables
are retained. In the PC-1403, however, all variables from A(27) and upwards
are cleared.
Therefore, if there is a need to retain variables at the start of program execution,
start the program execution using the GOTO command or function defined keys.

(3) Omitting ")"
1n the PC-121 O Series, the ")" which comes immediately before the [ENTER I or
: (colon) can be omitted. It cannot be omitted in the PC-1403. Therefore, be sure
to add the ")" to the program, if omitted.

(4) Print command
The PC-1403 has a PRINT command for displays and an LPRINT command for
printing. However, all PRINT commands can be used tor printing if PRINT =
LPRINT is specified.
The PC-1210 Series does not have the LPR1NT command. To print using a PC-
121 O Series program, add PRINT = LPRlNT to the program or, execute
manually.

For the execution of line 30 in the PC-121 O Series, the display on the left side also
follows the displayed format on the right side. In the PC-1403, the display follows
the previous specified format. This applies not only to the PAUSE command, but
also to the PRINT and LPRINT commands.

-123 1-123.45

-123.45 ·pc-1403

-1231 -123

-123.451
•pc-1210/PC-1211

(2) Specified format in USING
The function of the USING command differs between the PC-1403 and the PC-
1210 Series as follows.
Example:

10 A= -123.456
20 PAUSE USING"####.##"; A
30 PAUSE A, USING"####"; A
Executing this program displays the following.

APPENDIXG
Using Programs Written on Other PC Models

218

PC-1403 does not contain the following commands. Any program containing these
must be modified.
CLS, CURSOR, MEM$, GCURSOR, GPRINT, LINE, POINT, PRESET, PSET,
(TEST)

Mod ifi cations Required f o~r_PC-1350 and PC-2500 Series

IRB!t 111!!i§.IMl#ll'•'"*•''"i•fiit.-
Programs written on PC-1401, PC-1450 and PC-1460 Series computers can be used
without modification on the PC-1403.

(1) Character Code modification
Character code 96 (&60) is a space in PC-1260 Series but is a left single quote
(') in PC-1403. Accordingly, when the CHA$ command is used to specify a
space with character code 96, change this code to character code 32 (&20).

(2) CLS, CURSOR commands
PC-1403 does not have the CLS or CURSOR display commands. Deletion and
modification of these commands in any programs containing these are required.

Modifications Required for PC· 1260 Series

APPENDIXG
Using Programs Written on Other PC Models

219

© MEMORY CONTENTS
In the table of memory contents in each program example, variables with predeter
mined use are indicated by their specific use and those without predetermined use
(e.g., those to be stored in the work area to retain intermediate results of a
calculation, etc.) are indicated by the checkmark "v".

@PRINTOUT
For a program requiring a printout, the output of the program executed using the
CE-126P printer is given in actual size.

® PROGRAM CAPACITY
At the end of each program list, the capacity of the program itself is indicated in
number of bytes.

G) PROGRAM LIST
All the program lists contained in the programming examples are provided using the
hard-copy outputs from the CE-126P printer in actual size.

Having read the description of each of the various functions in the preceding chapters,
you have by now gained a knowledge of a number of program commands. However,
in order for you to have a command of developing application programs in BASIC
language, it is absolutely necessary that you write and execute your own practical
application programs as well as those explained in this manual.

Just as you can improve your driving skill by actually operating the steering wheel or
your tennis game by swinging the racket, proficiency in programming can only be
attained by practicing as many programs as possible, regardless of the degree of your
skill at each practice.

It is also very important for you to refer to programs developed by others. In this
chapter, some programming examples using various commands in "BASIC"
language are introduced to your reference.

For better understanding of the programming examples in this chapter, the conven
tions used in such examples are explained as follows:

Programming Examples :
' ' ' ' ' ' '

220

SHARP CORPORATION and/or its subsidiaries assume no responsibility or obligation
for any financial losses or damages that may be incurred from using any of the
examples of programs described in this manual. When using these programs, be
aware that these programs may not fully satisfy your purpose or some programs may
not be as precise as you wish them to be. Therefore, please carefully check the data in
each of the program examples you use and confirm that they meet your requirements.
If not, please modify them as required to meet your purpose before using them.

221

• Conversions between Orthogonal Coordinates and Polar Coordinates 222
• Calculation of Area of N-sided Polygon 227
•A Circle Osculating Two Circles 234
• Number Guessing Game 238

Page Program Title

CONTENTS

222

•REMARKS
1. Conversion to polar coordinates from orthogonal coordinates r=O and H=indefinite

if r=y=O

r= Vx2 + y2 + z2

fl=sin-1 (z/r)
cp=tan-1 (y/x) if x>O
cj>=90° if x=O and y~O
<j>= -90° if x=O and y<O
<j>=tan-1 (y/x)+180° if x<O and y~O
<l>=tan-1 (y/x)-180° it x<O and y<O

• HOW TO OPERATE
1 . Press ~ II) (for conversion to polar coordinate from orthogonal coor

dinates).
When the value of each of orthogonal coordinates x, y, and z is input according to
the display, the value of each of polar coordinates r, e, and cj> appears on the
screen in the order named and then the program ends.

2. Press m 00 (for conversion to orthogonal coordinates from polar coor
dinates).
When the value of each of polar coordinates R, fl, and cp is input, each value of x,
y, and z appears on the screen in the order named and then the program ends.

r~ote: When the unit of angle specification is DEG, the result of a conversion is
obtained in units of degrees. Likewise, when the angular unit specified is RAD,
conversion is performed in units of radians.

This is a very useful program for effecting conversions between orthogonal coordinates
and polar (spherical) coordinates in three dimensions. When each data for conver
sion is input, the result of the conversion is obtained according to the unit of angle
which is effective at that time.

PROGRAM TITLE: Conversions between Orthogonal Coordinates and Polar
Coordinates

223

• EXAMPLES
1 . Convert orthogonal coordinates to polar coordiantes

X=-1

y=2
z=-3
Angular unit specification: DEG

2. Convert polar coordinates to orthogonal coordinates
r=3. 741657387
6=-53.30077479
qi= 116.5650512
Angular unit specification: DEG

z

/ ' /
I ,/

I ' I 1

z --------~;/

i-- - -
I
I
I
I

z=rsinH

2. Conversion to orthogonal coordinates from polar coordinates
x == rcos fl coso x
y=rcosu · sinq> ..,

/ x 11
/ I I

/ I I
// I I

P(x,·y, z)'
--- 1

I
ly

,,,.__._~~~--'~~Y

224

>

10. I ENTER I

-3. J

9. I ENTER I

z

8. I ENTER!

E--·----~
10. Leiir~Fj]

9. ~~ c- 116.~650512 j

8. lli!JeA]

[PHI ~-=--~~-- - __ ___,
-53.30011419 2. I L_._

7. ~

6. ~t{i:~

[!B_~TA_~-~-~

5. IE@

[3.7416573871

r

4. -3 IEHTERJ

z=

3. 2 I ENTER I

I y =_
2. -1 IEHTERI

1. mim
J x =_

[Orthogonal coordinates ~ Polar
coordinates]

• KEY OPERATION SEQUENCE

225

A v
c (1

F cj1
R r

x x-coordinate
y y-coordinate

z z-coordinate

• MEMORY CONTENTS

300 Bytes

50:C=ASN (Z/R):IF X>0
LET F=ATN (Y/X):GOTO
80

60:A=(Y=0)+SGN Y:IF X=0
LET F=A*ACS 0:GOTO 8
0

70:F=ATN (Y/X)+A•ACS -1
80:WAIT :PRINT "r":

PRINT R:PRINT "THETA
":PRINT C:PRINT "PHI
'':PPIHT F:EMD

90:"B":INPUT "r=";R
100:INPUT "THETA=•;c
110:INPUT "PHI=";F
120~Y=R•COS c:x=Y*COS F:

Y=Y*SIN F:Z=R•SIN C
130~WAIT ~PRINT "z":

PRINT X:PPINT •y•:
PRINT Y:PRINT "z":
PRINT z:END

d e f i ned'': END

• PROGRAM LIST
1(1: ''A'': I HPUT '':t=''; ::<
20: rnPUT ''•F'·'; 'i
3[1:rnPUT ''z='';z
40:R=SQR (X*X+Y*Y+Z*Z):

IF R=0 PAUSE "r=0 Un

END

Values of It, y, and a
are displayed

llne1:;;3;:.0 _ __.._ __ """'\

Y•R*COSC
Xa.Y*COSF
Y=Y*SINF
Z~Fl*SINC

line 120

(Polar coordinates - Orthogonal coordlnates)

226

END

Values cf r , n. Mtl qi
arf.tdl:;pl:Jyet1

linoe~:;,o-~---,

F• ATNiYIX}

F ATNIYIXI 'A*
ACS I

YES

A iY O)+SGNY

END

r...;Oundolined is
displayed.

R=SOA(X*X·~ y:;:y + Z:i:Z!

Line4C

(Orthogonal coodinates _, Polar coordinates)

• FLOWCHARTS

227

where
L: Base length {the longest of sides a, b, and c)
h: Height (Figures are truncated to three decimal places.)

Area of triangle

S
_a+b+c - 2

S=Js(s-a)(s-b)Cs-c)

(2)

(1)

•REMARKS

• HOW TO OPERATE
1. Press ~ W . (Program starts)

Input the number of vertexes (l.e., points) and the coordinates x and y of each
vertex according to the display.

2. Next, press [QEJ 00 .
Input the vertex number (i.e., point number) of each of the three vertexes of the
triangle according to the display, and the area of the triangle will be printed out.
When you press I EHTERJ before entering the vertex number, the sum total of the
areas of all the triangles is output on the printer.

3. If you press ~ ~! , the sum total of all the triangle areas will be cleared and
then the program ends.

Note: The number of vertexes may be stored up to the following limits:
255 vertexes

Any polygon is theoretically an aggregation of triangles. By utilizing this theory, let us
calculate the area of a polygon. This program figures out the area of a polygon by
dividing the polygon into triangles, calculating the area of each triangle, and obtaining
the sum total of the areas of all the triangles.

Required Peripheral
Equipment
CE-126P

PROGRAM TITLE: Calculation of Area of N-sided Polygon

228

65.993304 1:- -
9. :338

12. iss
13.416
11. 662

A=
B=
C=
H=

1-3-4
:3=

7.211
:3. '344

12.166
5.260

31.9965:30

A=
B=
C=
H=

Point. l:r= 4
Point. 1·~= 1t1
F'o int. 2:r= :3
Point. 2·~= 4
Point. 3:t= 16
Pei int. 3·~= :3
Point. 4:t= 10
Point. 4·~= 2i;::1

1-2-3

• PRINTOUT

(2)
X=B
Y=4

X=16
l3l Y=B

(4J X=10
Y=20

y

• EXAMPLE
Figure out the area of a 4-sided polygon as shown below.

229

<Clearing of sum total of triangle
areas>
1. li:lEFJITJ

[** TS CLE~_F{~!: I

I> J

)

8. IENTERI

7. 4 ~

I Point=_

Point=_
6. 3 IENTERJ

5. 1 ~

I Point=_

4. 3 ~

I Point=_

3. 2 ~

I Point=_

2. 1 [Bill)

I Point=_

1. mim
[Point=_

<Input vertex (Point) Nos. of each
triangle>

)

20 Lg~-;:rt>J • -r ,

Input data in the same manner as
above.

3. 4 ~

I Point 1y=

2. 4 ~

I Point 1x=

1. mrn
I Numbers=_

<Input coordinates X and Y of each
vertex>

• KEY OPERATION SEQUENCE

340:L= INT Cl•1000+.5)/l
000:RETURN

350:L= INT Cl•1000000)/1
000000:RETURN

360:PAUSE "Point •;sTR$
(I+t);BS(0):RETURN

370:LPRINT "Point •;sTR$
(I+l);B$(0):RETURN

962 Bytes

RETURN

270:S=L:L=K:GOSUB 350
2s0:K=L:LPRINT •;sTR$

0+"-"+STR$ p+•-•+
STR$ GI

290:LPRINT •A=•; USING
•ttttttttttttttttttttUU.tttttt";A

300:LPRINT •B= "iB:
LPRINT "C= •; c:
LPRIMT '·'H= •; J:
LPRINT USING "UttttttlU
utttttttttt.uttuu1u•;•s= •
; S: GOTO 120

310:LPRINT ••:LPRINT "*T
S•=•; USING •ttttttUUUtt
U.UttUtt"iK:END

320:"C":K=0:USING :PAUSE
•**TS CLEAR**":
END

230

190:C=X:IF A>X LET X=A
200:IF B>X LET X=B
210:I=(A+B+C)12:S=SQR CI

*(I-A>•<I-B>•<I-C))
220:J= INT ((2•S/X)*10n3

)110A3:L=X:GOSUB 340
230:X=L:S=X•J12:K=K+S:L=

A:GOSUB 340
240:A=L:L=B:GOSUB 340
250:B=L:L=C:GOSUB 340
260:C=L:L=S:GOSUB 350

GOSUB 330

• PROGRAM LIST
10:"A":USING :CLEAR

~.JAIT 0
20:INPUT "Numbers=";N
30:IF N<t BEEP 2:GOTO 2

0
40:DIM XCN-1),YCN-1),B$

(0)
50:FOR I=0 TO N-1
60:B$(0)="z=":GOSUB 360
70:INPUT X(I):B$(0)="z=

"+STR$ X(I):GQSUB 3
70:GOTO 90

80:N=I:END
90:BSC0)="y=":GOSUB 360

: INPUT Yd)
100:B$(0)="y= "+STR$ 'r'(I

):GOSUB 370:NEXT I
110: BEEP 1: UJD
120:"B':USING :INPUT "Po

int=•;o,"Point=•;p~·
Point=";Q:GOTO 140

130:GOTO 310
140:IF (0(1)+(0)N)+(P{1)

+CP>N)+(Q(l)+(Q}N)<>
0 GOTO 120

150:C=X(0-1):D=Y(0-1):E=
X(P-l):F='r'(P-l):G=X(
G!-l):H=Y(Q-1)

160:X=E-C:Y=F-D:GOSUB 33
0

170:A=X:X=G-E:Y=H-F:
GOSUB 330

180:B=X:X=C-G:Y=D-H:

END

N=I

line BO

YES

231

ENO

• FLOWCHARTS

A a
B b

c x., v
D v.
E X2

F Y2
G X3

H Y3
I s
J h
K LS
L v'
N Number of vertexes

0 v'
p v'
Q v
s s
x v
y v'

X(N-1) x-coordinate

Y (N-1) y-coordinate
B $(0) v'

• MEMORY CONTENTS

END

TS ClEAA
is displayed

Sumtctalls
cleared. USING

is released.

Une320

232

I •IA ,5.,Cl/2
S=SOR(l*(t ·Al*(I ·Bl*li-CI)
J" INT (12*SIX)*t0'3)/ tCl"J
l•X

C=X(0-1):D=Y(0-1)
E=X(P-1):F=Y(P-11
G=X(Q-1):H=Y(0-1)
X=E-C
Y=F-D

233

RETURN

Subroutine 3

RETURN RETURN

Bubrcutlne a Subrou11no2

234

When all the above data is input, the center coordinates of the circle osculating circles
C1 and C2 and the coordinates of points of contact P1 and P2 are displayed on the
screen in the order named. Then, the program ends.

Conditions Value

(1) When the circle to solve with respect to circle C1 is osculating externally 1
When the circle to solve with respect to circle C1 is osculating internally -1

(2) When the circle to solve with respect to circle C2 is osculating externally 1
When the circle to solve with respect to circle C2 is osculating internally -1

(3) When the circle is on the left side as circle C2 is viewed from circle C, 1
When the circle is on the right side as circle C2 is viewed from circle C1 -1

3. Then input the value of each of the following three discriminating conditions:

• HOW TO OPERATE
1. Press ~ [A] . (Program starts)

2. Input the center coordinates (x, and y,) of circle C1 and radius R,, the center
coordinates (x2 and y2) of circle C2 and radius R2, and the radius R of the circle
osculating circle C1 and C2 according to the display.

There are two adjoining circles to both of which another circle is tenderly adhering. Will
a warm feeling begin to bud there? Such a way of looking at these circles may bring a
light touch to your study of geometry. This program finds out the center of a circle
osculating two circles and the coordinates of the two points of contact by inputting the
center coordinates and radius of each of the two circles together with three discriminat
ing conditions.

PROGRAM TITLE: A Circle Osculating Two Circles

235

)

13. {ENTER[

35.83 \ I P2 y=
12. I ENTER I

13.27 I I P2 x=

11. [ENTER\

29.84 I I P1 y=
10. L~!!TEA]

3.06 I \ P1 x=

9. l~TERJ

I P0 y=

7. 1 ~

I P0 x=
L:.~ --·

Discriminating conditions
(1) 1 (osculating externally)
(2) 1 (osculating externally)
(3) 1 (on left side)

C1: x1=0, Y1=0, r1=30
C2: x2=50, Y2=20, r2=40
R=10

6. 1 ~

I LEFT: 1 RIGHT :1-1=-1

5. 1 !ENTER[

@2.0UT:1 iN:-1=- \

4. 10~

I C1. OUT:1 IN :-1=_

Input data in the same manner as
above.

I C1 r=i:
3. Q [ENTER[

\ C1 y=_
2. 0 ~~J

1. IQ0 [AJ

[~~~~·-=--

• KEY OPERATION SEQUENCE

c, _,,

y

• EXAMPLE

236

A X1
B Y1
c v
0 X2
E Y2
F v
G Discriminating condition (3)
H P1X
I P1Y
J P2X
K P2Y
L v
M P0x

N PoY
0 r1
p r2
Q Discriminating condition (1)

A Discriminating condition (2)

s A
w v
x v
y v

• MEMORY CONTENTS

663 Bytes

PRINT 'P2 ~=·;K:END
240:W=ACS (XISQR (X*X+Y*

Y)):IF 0>Y LET W=-W
250: RETU~:N

:r= ., ; .J: '·'O·-:• I,_
·;i=''; I '' p 1 PRHH

230: P~:HJT

~-·) "'''• .i..- ~ :i:.

160:IF ((R=-l)*(S}P))=l
LET ~1=~J+1:30

170:J=M+S*COS W:K=N+S*
SIM ~l

180:M=M+SGN M*.005:N=N+
%M M:t<.005

190:H=H+SGM H•.005:I=I+
:3GN I*. 005

200:J=J+SGN J:t<.005:K=K+
:3GN K:tc. 005

210:PRitH ''P0 x=''; IJSHHi
'' ttUttttltU. tt:n: ., ; M:
PRIMT ''P0 ·~=''Hl

C E-t-D: G0:3UB 240

1 = ... ;I] .
90:INPUT ·c2.our:1 IN~

i=";R
100:INPUT "LEFT:l RIGHT:

-1='' i G
110:F=P+R*S:C=O+Q*S:H=D

A:I=E-B:J=SQR CH*H+I
*I):K=ACS (H/J):IF 0
>I LET K=-1<

120:L=ACS CCC*C+J*J-F*F)
/2/C/J)

130:N=K+G*L:M=A+C*COS N:
N=B+C*SIN N:X=Q*(A-M
):Y=Q*(B-N):GOSIJB 24
0

140:IF ((Q=-1)*(S)0))=1
LET ~J=~J+ 180

150:H=M+S*COS W:I=N+S*
SIN W:X=R•CD-M):Y=R*

1 ::t:=''; A
20: INPUT '·'C 1 ·~=···; B
30: HJPIJT '·'Cl r=···; 0
4~1: IMPUT ')C2 r= •.•;[I

50: HJPUT '·'C2 ·~=···; E
60: I t·lPIJT '·'(:2 r= •; p
70: WPUT 'JR=='·'; S
:30: IMPUT ''CLOIJT:t rn:-

• PROGRAM LIST

237

RETURN

w--w

Lme240

Subrouline 1

Lines 17010 200

center cccrdlnates of circle
osulatit1gC1 &C2and
poln1solcootectP1 &P2
are celculeted.

NO
W=W-t 190

YES

W•W+180

YES

M=M<-S*COSW
l=N+S>i<SINW
X.A*ID-M)
Y~R*IE-N)

Una150

N--K+G*L
M=A+C*COSN
N=B+C*SINN
X=O*(A-M)
Y=O*(B-·N)

llne130

L=ACS(IC*C oJ*J F*F)
121C1J)

F~P+R*S
C=O+O*S:H=D-A
l=E-B
J~ SOR(H*I< > 1*11
K=ACS(H!J)

Line 110

•FLOWCHART

238

If the display reads as shown above, the first number (1) following comment tells
you that one digit of the 3-digit number you have input matches the random number
generated with respect to its digit position and value. The second number (1) tells
you that one digit of the 3-digit number you have input matches the random number
generated with respect to its value only.

• Comment: 3 0

If the display reads as shown above, all three digits of the number you have input
match the random number generated with respect to their digit positions and
values. When you make a hit, the message "VERY GOOD!" and the number of
attempts you made before the hit appear on the screen. Then, the program ends.

Note: Remember you can only input a 3-digit number.

• HOW TO OPERATE
1. Press ml CXJ . (Program starts)

2. "X=" will be displayed on the screen. Now, input a 3-digit number which you
think the computer might have generated. Then, the screen will display the
number of attempts you made and the 3-digit number you entered, followed by a
comment (about 1 second later).

For example,

• Comment: 1

This program is designed to allow you to play a game of guessing a3-digit number to be
generated randomly from the computer. Don't study too much for examinations. Try
this game for a change. Now, let us see how many attempts you must make before you
can make a hit!

PROGRAM TITLE: Number Guessing Game

239

A v
B v

~·-- c 3-digit number
D \I

F v
G v
H v·
J Comment ..
L v
M v
p Comment
x Input value
y Number of attempts

• MEMORY CONTENTS
309 Bytes

90:PAUSE "Comment:•;
USING "llltt";J;P:IF
J<>3 LET Y=Y+t:GOTO
30

100:BEEP 2:PRINT "VERY G
oon ! v ; v: END

110:L=L+1:IF A(A)=A(L)
LET P=P+l

120:RETURN

2:MEXT A

10:"A":CLEAR :RANDOM :y
=1

20:FOR A=2 TO 4:A(A)=
RND 10-t:NEXT A:IF
B=C)+CC=D)+(D=B)<>0
THrn 20

30:BEEP t:INPUT ·x=·;x
40:USING :PAUSE y,x
50:FOR A=6 TO B:A(A)=X-

INT (X/10)*10:X= INT
(X/H)):NE:>ff A

60:.J=0:L=6:P=0
70:FOR A=2 TC 4:IF ACA)

"'A(U LET .J=J+t
80:GOSUB 110:GOSUB 110:

M=F:F=G:G=H:H=M:L=L-

• PROGRAM LIST

4. 305 [EHTERI

6 3051

I Comment:3 01
I VERY GOOD! sl
1) I

Input data in the same manner as
above.

CX=-
__ jU Comment:1

2
145 IEHTERI 3.

I Comment:~ 1 I
I X=_ ------·· -=1

1 123 I
123 IEHTEaj 2.

L&- ---
1.

• KEY OPERATION SEQUENCE

RETURN

p,,,-p+1

St.tbrm.11tne1

END

YES

240

• FLOWCHART

& 77 CE-126P 103

* 86 Cell replacement 11
+ 86 CHAIN 134

86 CHA$ 185
86 CLEAR 136
86 CLOAD 115

-r: 183 CLOAD? 116
< 86 Clear key 17 ... 57 CONT 117
<= 86 cos 180
<> 86 CSA VE 118

86 CUR 180
> 86 Cursor 9
.... 57 Cassette tape 110
>= 86 Character Code Chart 197
ii 178 Commands 92
i 94 DATA 137
! 94 DEF key 101
A() variables 84 DEG i80
ABS 179 DEGREE i38
ACS 179 DELETE 119
AHC 179 DELetekey 95
AHS 179 DIM 139
AHT 179 Direct calculation feature 74
ALL RESET 10 DMS 180
AND 87 Debugging 189
AREAD 131 Display 20
ASC 185 END 141
ASN 180 ENTER key 56
ATN 180 EXP 181
Array variables 81 Edition calculations 56
Auto off (Auto Power Off) 15 Editing programs 94
BASIC key 7 Error Messages 193
BASIC mode 8 Expressions 85
BEEP 133 FACT 181
CA key 205 Fixed variables 79
CAL key 7 FOR .. TO ... STEP 142
CAL mode 8 Formatting output 199
C.CEkey 205 Functions 90

241

INDEX

GOSUB 144 ON ... GOSUB 157
GOTO 120, 145 ON ... GOTO 158
GRAD 146 OR 87
Hard cover 4 Operator priority (BASIC) mode 203
HCS 181 Operators 86
HSN 181 P~NP 104
HTN 181 PASS 127
IF ... THEN 147 PAUSE 159
INKEY$ 176 Pl 178
INPUT 148 PRINT 161
INPUT# 150 PRINT# 163
INSertkey 59 PROgram mode 7
INT 181 Parentheses 89
LEFT$ 185 POL 182
LEN 185 Printer 103
LET 153 Priority (CAL mode) 29
LIST 121 Program 91
LUST 122 Pseudovariables 176
LN 181 RADIAN 165
LOG 181 RANDOM 166
LPRINT 154 RCP 182
Labeled programs 101 READ 167
Last answerfeature 68 REC 182
Limits of numbers 67 Relational expressions 86
Line numbers 91 REM 168
Linear regression 37 REN UM 128
Logical expressions 87 RESET 10
MATRIX operations 44 RESTORE 169
MEM 177 RETURN 170
MID$ 186 RIGHT$ 186
Maintenance 191 AND 182
Manual calculations 55 RUN 130
Masks 199 RUN mode 90
MDF 155 Range of numbers 67
Memory Protection 127 Relational expressions 86
MERGE 123 ROT 183
NEW 126 Scientific notation 66
NEXT 156 SGN 183
NOT 87 SHIFT key 16
Numeric expressions 86 Simple variable 80
Numeric functions 179 SIN 183
Numeric variables 79 Single-variable statistics 36
ON (Start up) 15 SQR 183

242

243

SQU 183
STOP 171
STR$ 186
Statements 91
Statistical calculations 35
String expressions 86
String function 185
String variables 79
Subroutines 144
TAN 184
TEN 184
TROFF 172
TRON 173
Tape Recorder 105
Template 102
Troubleshooting 187
Two-variable statistics 37
USING 174
VAL 186
Variables 78
Verbs 92, 113,131
WAIT 175

1986@ SHARP CORPORATIO~

PRINTED IN JAPAN/IMPRIME AU JAPON
1 G0.5T(TINSE1066ECZZ)@)

OSAKA.JAPAN
SHARP CORPORATION

